Как называются сплавы на основе железа. Железо и его сплавы. Модификации железа — рычаг термической обработки

Содержание статьи

МЕТАЛЛЫ ЧЕРНЫЕ, железо и его сплавы, важнейшие конструкционные материалы в технике и промышленном производстве. Из сплавов железа с углеродом, называемых сталями, изготавливаются почти все конструкции в машиностроении и тяжелой промышленности. Легковые, грузовые автомобили, станки, железные дороги, корпуса и силовые установки судов – все это делается в основном из стали. Масштаб производства стали является одной из основных характеристик общего технико-экономического уровня развития государства. На долю стали приходится около 95% всей металлической продукции.

когда температура опускающейся смеси руды с коксом достигает 600–700° С. В результате образуется твердое, но пористое губчатое железо, которое затем плавится в нижней, более горячей части доменной печи (горне).

Если бы доменную печь можно было загружать чистыми оксидом железа и углеродом и продувать чистым кислородом, то термохимия доменной печи сводилась бы к написанным выше простым уравнениям. На самом же деле во вдуваемом воздухе больше азота, чем кислорода, а руда может содержать свыше 50% безрудных минералов (пустой породы), в основном силикатов. Азот проходит через печь, не вступая в реакцию, но с силикатами дело сложнее. Чтобы можно было отделить силикаты от железа и вывести из печи, они должны быть жидкими. Силикаты, содержащиеся в железной руде, образуют расплавленный шлак при взаимодействии с известью CaO. Для этого в печь вместе с рудой загружают в нужной пропорции известняк CaCO 3 . Известняк, или «флюс», разлагается в верхней части печи соответственно реакции

образуя известь, необходимую для перевода силикатных примесей железной руды в жидкий шлак. Доменная печь дает почти столько же шлака, сколько и чугуна. Затвердевая, шлак превращается в темный стекловидный материал, который в прошлом накапливался в больших шлаковых отвалах возле передельных металлургических заводов. В наши дни шлак идет на изготовление заполнителя для бетона, железнодорожного балласта, шлаковаты и противоюзового покрытия автомобильных дорог.

Из сказанного выше вытекают основные требования к конструкции доменной печи. Она должна обеспечивать непрерывную загрузку топливом, рудой и флюсом сверху, непрерывную подачу воздуха и периодический отвод жидких продуктов снизу. Печь должна быть достаточно высокой, чтобы успевали протекать необходимые химические реакции. Воздух вдувается в печь через фурмы, расположенные в ее нижней части, и поднимается сквозь шихту вверх. Восстановленное губчатое железо и шлак плавятся на уровне «заплечиков», в самой широкой части печи, а жидкость накапливается в горне, ниже фурм. В горне периодически пробивают заделанные глиной летку для выпуска металла и (несколько выше) шлаковую летку.

Восстановление оксида железа до губчатого железа и разложение известнякового флюса происходят в шахте – основной части доменной печи – в процессе медленного оседания шихты. Шихта начинает разогреваться в колошнике – верхнем конце шахты. Диоксид углерода и азот непрерывно отводятся по широкому газоходу из колошника. Поскольку при нормальной работе доменной печи давление газов в колошнике выше атмосферного, верхний конец печи нельзя просто открывать для загрузки, иначе упадет давление газов и из печи будут выдуваться наружу тонкоизмельченные компоненты шихты. Для предотвращения этого предусмотрен двухконусный шлюзовой засыпной аппарат. Нижний конус поднимают так, чтобы он газоплотно закрывал загрузочное отверстие, а затем опускают верхний для загрузки. После этого снова поднимают верхний конус, герметизируя вход в печь, и, опустив нижний, пропускают порцию шихты (колошу) в колошник.

Современная доменная печь представляет собой крупное сооружение. Высота печи, производящей 1000 т чугуна в сутки, составляет около 30 м, а диаметр на уровне заплечиков – ок. 8 м. Печь устанавливается на бетонном фундаменте, на котором в стальном кожухе выводится кладка из огнеупорного кирпича. Нижняя часть этой конструкции охлаждается водой.

Сколь ни внушительны размеры доменной печи, сама она – лишь малая часть чугуноплавильного завода. Для ее нормальной работы нужны еще отделение шихтовых материалов, грузоподъемные устройства для загрузки печи, насосы для подачи воздуха (дутья) и воздухонагреватели (кауперы), шлаковозы и литейный цех или приемная система для расплавленного металла. Для загрузки доменных печей иногда применяются ленточные конвейеры, но чаще руда, топливо и флюс подаются скиповыми подъемниками – небольшими сосудами (скипами), движущимися на колесах по наклонным рельсам от нижних засыпных бункеров до верхней загрузочной площадки, где они автоматически опрокидываются, разгружаясь в приемную воронку засыпного аппарата.

Эффективность доменной печи существенно повышается при использовании горячего дутья. Воздух, подводимый к фурмам, предварительно нагревается до температуры, которая может достигать 1000° C. Нагревание осуществляется в кауперах, каждый из которых ненамного уступает в размерах самой доменной печи. Каупер представляет собой вертикальный цилиндрический стальной кожух с внутренней «шахматной» насадкой из огнеупорного кирпича.

Газ, отводимый с верхнего конца доменной печи, содержит моноксид углерода и другие газы, способные гореть. Этот газ по широким наклонным газоходам подводится к нижней части каупера, где, пройдя через пылевой фильтр, сжигается в камере горения. Продукты горения поднимаются вверх, нагревая кирпичную насадку. Когда насадка достаточно нагрета, перекрывают подачу топлива и газа в камеру горения и включают воздуходувки, которые гонят воздух через каупер в фурмы доменной печи. Для каждой доменной печи обычно предусматривают четыре каупера: два нагреваются, а два других подают горячее дутье. Потоки газа и воздуха периодически переключаются так, что непрерывно поддерживается заданная температура дутья.

Существует ряд способов дополнительного повышения эффективности доменной печи. Один из них – работа при давлении внутренних газов, вдвое превышающем атмосферное. Это позволяет повысить производительность примерно на 15% и снизить потребление кокса примерно на 10%. Экономические преимущества повышения производительности в какой-то мере снижаются затратами на более мощное воздуходувное оборудование и возможным уменьшением срока службы огнеупорной кладки.

При выпуске плавки из доменной печи шлак вытекает из своей летки, а металл – из своей, расположенной ниже. Ранее шлак заливали в шлаковозы – большие ковши на железнодорожных колесных тележках, которые доставляли незатвердевший шлак к отвалам. Теперь же шлак обычно отводят на перерабатывающую установку, расположенную рядом с домной, где он охлаждается водой и при этом гранулируется, после чего используется как заполнитель для бетона и пр.

Жидкий металл, вытекающий из летки, направлялся по желобам, подготовленным в песочной «постели» перед печью. Из желобов он растекался по удлиненным боковым углублениям в песке, где и затвердевал в виде болванок, называемых чушками (из-за сходства с многочисленными поросятами, сосущими свиноматку). Хотя литье в песок более не применяется, металл, выплавляемый в доменных печах, по-прежнему называют чушковым (применяется и термин «штыковой» чугун). В наши дни в тех случаях, когда требуется чушковый чугун, расплавленный металл разливают по стальным литейным формам, непрерывно движущимся перед домной на ленточном конвейере. Когда металл затвердевает, формы переворачиваются и, освободившись от чушки, возвращаются за следующей отливкой. Чтобы чугун не приставал к формам, их покрывают каменноугольной смолой или известью.

Чугун.

Выплавляемый в доменной печи сплав железа с углеродом и кремнием имеет температуру плавления ок. 1150° C. В расплавленном состоянии чугун легко заполняет литейные формы любой конфигурации. Поэтому он очень подходит для изготовления многих видов изделий.

Основные средства производства на чугунолитейном заводе – это плавильная печь, модели изделий и формовочные материалы. Из плавильных печей проще всего вагранка, т.е. небольшая печь шахтного типа, футерованная огнеупорным кирпичом. В ее нижней части имеются фурмы, а в верхней – дымоход для отходящих газов. Через боковое отверстие загружают топливо и чугун, печь разжигают и включают дутье. Расплавленный чугун собирается на подовой плите и по мере надобности выпускается через летку. На более крупных чугунолитейных заводах чугун плавят в отражательных печах.

Для получения отливок хорошего качества нет необходимости в очень сложном оборудовании. Первый шаг – изготовление модели изделия. Модель изготовляет из дерева опытный мастер-модельщик, давая припуск на усадку чугуна при затвердевании. Литейные формы для чугунных отливок делают из формовочной смеси (глины с песком), липкой, но пористой. Модель помещают внутрь разъемной рамы, состоящей из «опок», и заполняют опоки формовочной смесью. Затем опоки разнимают и удаляют модель. Когда их снова складывают вместе, в формовочной смеси образуется полость литейной формы, точно соответствующая модели. Остается проделать литниковые отверстия и каналы, по которым жидкий чугун мог бы затечь в полость формы.

После высыхания форма готова к заливке. Если заливка проходит хорошо, то жидкий чугун заполняет все пустоты формы, не оставляя воздушных пузырей. Когда чугун затвердевает, отливку «раздевают», разбивая форму. Во многих случаях для «доводки» изделия бывает достаточно сгладить шлифованием неровные края отливки.

Чушковый чугун, чаще всего применяемый для литья, называют серым чугуном, поскольку серой, даже сажистой, выглядит его поверхность на изломе. Такой ее вид объясняется большим содержанием углерода (около 4%), присутствующего в железе в форме чешуек графита. Серый чугун жидкотекуч, имеет низкую температуру плавления и к тому же хорошо поглощает энергию вибрации – чугунный колокол не звенит. Благодаря этому чугун подходит для изготовления рояльных рам, станин прокатных станов, токарных, фрезерных и других станков. Очень распространенное изделие из серого чугуна – блок цилиндров автомобильного двигателя; чугун для этого применения хорош тем, что дешев и легко заливается в формы сложной конфигурации.

Хотя серый чугун и прочен, он хрупок и легко разрушается при резком ударе. Поэтому вместо него чаще применяют ковкий чугун. Отливки из ковкого чугуна получают в два этапа. Сначала делается отливка из белого чугуна со сравнительно низким содержанием углерода и кремния. Такой чугун очень хрупок, но после высокотемпературного отжига в течение суток его пластичность намного увеличивается. Увеличение пластичности обусловлено перераспределением углерода в металле, происходящим при отжиге. В белом чугуне углерод содержится в форме карбида железа Fe 3 C. В процессе отжига карбид разлагается на железо и графит. Этот графит имеет вид малых сферических включений, которые, будучи отделены друг от друга, почти не снижают пластичность окружающей их железной матрицы. Из ковкого чугуна изготовляют трубопроводные фитинги и железнодорожное оборудование.

СТАЛЬ

Первоначально доменные печи строили в основном для выплавки литейного чугуна. Позднее были найдены способы переработки чугуна в сварочное железо, и металл доменной печи стал исходным материалом для такого железа. После разработки широкомасштабного и недорогостоящего производства стали на основе бессемеровского процесса и процесса Сименса стала экономически целесообразной переработка чугуна, выплавляемого в доменных печах, в сталь. В настоящее время почти весь чугун доменных печей идет на такой передел. Сталь – это особенно ценный конструкционный материал, которому можно придавать практически любую форму прокаткой, штампованием и прессованием, литьем или обработкой резанием. Путем легирования и термообработки можно получать стали с самыми разнообразными физическими и химическими свойствами. Так, например, одни стали настолько мягки, что их можно обрабатывать простым ручным слесарным инструментом, а другие столь тверды, что позволяют резать стекло.

ПРОЦЕССЫ ПРОИЗВОДСТВА СТАЛИ

При переделе в сталь чугуна, выплавленного в доменной печи, из него окислением удаляют почти весь углерод и весь кремний. Могут добавляться в качестве легирующих элементов марганец, никель или хром. В настоящее время основным способом переработки чугуна, выплавляемого в доменной печи, стал кислородно-конвертерный процесс, хотя кое-где еще применяется мартеновский процесс.

Важной особенностью производства стали является относительная легкость ее повторного использования. И кислородный конвертер, и мартеновская печь могут работать с большим процентом стального металлолома (скрапа), а электропечь – и на одном скрапе. Это приобретает особенно важное значение в наши дни, когда обострилась проблема удаления отходов.

Стоимость повторного использования в значительной мере зависит от качества металлолома. Металлолом, содержащий олово или медь, нежелателен в производстве стали, поскольку эти трудноудаляемые металлы ухудшают механические свойства стали. Наибольшую ценность представляет крупный металлолом, происхождение которого известно. Некоторые количества такого скрапа поступают с металлообрабатывающих заводов, а еще больше – после разборки устаревшего заводского и железнодорожного оборудования и разделки на металлолом морских и речных судов. Скрап в виде отработавших свой срок автомобилей и емкостей для продуктов питания менее ценен, так как он наверняка содержит медь и олово.

Легирующие элементы обычно добавляют в сталь в виде ферросплавов. Ферросплавы содержат значительные количества железа, которое служит носителем легирующих элементов. К наиболее важным ферросплавам относятся ферромарганец (такой, как шпигель, или зеркальный чугун), необходимый для всех сталей; ферросилиций, применяемый для получения сталей со специальными магнитными свойствами и для раскисления сталей, выплавляемых в электропечах; феррохром и феррованадий. Никель добавляется в виде беспримесного металла.

Конвертерный процесс.

В первой половине 20 в. первоначальный бессемеровский процесс постепенно утратил свое прежнее значение. Дело в том, что тепла, выделяющегося в бессемеровском конвертере, недостаточно для расплавления металлолома – более дешевого сырья, нежели горячий металл из доменной печи. Быстрое протекание плавки в бессемеровском конвертере не давало возможности провести анализы стали и скорректировать ее состав в соответствии со спецификациями. Мартеновский же процесс допускает значительный процент металлолома в загрузке печи, и реакции в нем протекают достаточно медленно, чтобы можно было успеть выполнить анализ в процессе плавки и провести коррекцию состава до выпуска металла.

Но в 1950-х годах конвертерный процесс производства стали снова вернулся к жизни и в течение следующих 35 лет полностью вытеснил мартеновский процесс, поскольку была разработана технология получения дешевого чистого кислорода, позволившая перейти с воздушного на кислородное дутье в конвертере. По этой технологии кислород в количествах, измеряемых тоннами, производят дробной (фракционной) перегонкой жидкого воздуха; для производства стали требуется кислород с чистотой 99,5%.

Воздух – это на 80% азот, а азот – это инертный газ, не участвующий в реакциях конвертерной выплавки стали. Таким образом, в бессемеровском конвертере через расплавленный металл продувается большое количество бесполезного газа. Но этого мало – часть азота растворяется в стали. Последующее выделение растворенного азота в форме нитридов может приводить к ее последеформационному старению – постепенному уменьшению пластичности, которое приводит к трудностям при обработке давлением. Такого рода трудности отпадают, если металл в конвертере продувать не воздухом, а чистым кислородом. Но простой переход с воздуха на кислород в бессемеровском конвертере недопустим, так как из-за сильного разогрева фурм конвертер быстро выйдет из строя. Эта проблема была решена так: кислородное дутье подводится к поверхности расплавленного чугуна по трубе с водяным охлаждением. В 1952 35-тонный конвертер такого типа был успешно запущен в австрийском городе Линце на заводе фирмы VOEST. Такая технология, названная процессом ЛД (аббревиатура от Линца и Р.Дюррера, инженера фирмы), позднее была развита в кислородно-конвертерный процесс. Быстрая реакция окисления в конвертерной шихте, характеризующейся малым отношением площади поверхности к объему, сводит к минимуму потери тепла и позволяет вводить в шихту до 40% металлолома. Кислородный конвертер может каждые 45 мин выдавать 200 т стали, что в 4 раза превышает производительность мартеновской печи.

Кислородный конвертер с верхней продувкой представляет собой грушевидный сосуд (с открытой узкой верхней горловиной) диаметром ок. 6 м и высотой ок. 10 м, облицованный изнутри магнезиальным (основным) кирпичом. Эта футеровка выдерживает примерно 1500 плавок. Конвертер снабжен боковыми цапфами, закрепленными в опорных кольцах, что позволяет наклонять его. В вертикальном положении конвертера его горловина находится под вытяжным колпаком дымоотводящего камина. Боковое выпускное отверстие, имеющееся с одной стороны, позволяет отделить металл от шлака при сливе. В конвертерном цеху рядом с конвертером обычно имеется загрузочный пролет. Сюда транспортируется в большом ковше жидкий чугун из доменной печи, а в стальных бункерах накапливается металлолом для загрузки. Все это сырье переносится к конвертеру мостовым краном. По другую сторону от конвертера расположен разливочный пролет, где имеются приемный ковш для выплавленной стали и железнодорожные тележки для транспортировки его на разливочную площадку.

Перед началом кислородно-конвертерного процесса конвертер наклоняют в сторону загрузочного пролета и через горловину засыпают металлолом. Затем в конвертер заливают жидкий металл из доменной печи, содержащий около 4,5% углерода и 1,5% кремния. Предварительно металл подвергается десульфуризации в ковше. Конвертер возвращают в вертикальное положение, сверху вводят охлаждаемую водой фурму и включают подачу кислорода. Углерод в чугуне окисляется до CO или CO 2 , а кремний – до диоксида SiO 2 . По «течке» (загрузочному лотку) добавляется известь для образования шлака с диоксидом кремния. Со шлаком выводится до 90 % кремния, содержащегося в чугуне. Содержание азота в готовой стали сильно понижается благодаря промывающему действию CO. Приблизительно через 25 мин дутье прекращается, конвертер немного наклоняют, отбирают пробу и анализируют ее. При необходимости в корректировке можно снова возвратить конвертер в вертикальное положение и ввести в горловину кислородную фурму. Если же состав и температура расплава соответствуют спецификациям, то конвертер наклоняют в сторону разливочного пролета и через выпускное отверстие сливают сталь.

Кроме кислородно-конвертерного процесса с верхней продувкой, существует кислородно-конвертерный процесс с подачей кислорода в струе топлива через днище конвертера. Фурмы в днище конвертера защищаются одновременной продувкой природного газа. Такой процесс быстрее протекает, он более производителен, чем процесс с верхней продувкой, но менее эффективен в отношении расплавления металлолома. Однако нижнюю продувку можно сочетать с верхней.

Мартеновская печь.

Как уже упоминалось, мартеновская выплавка стали еще применяется в ряде стран, хотя и постепенно заменяется кислородно-конвертерным процессом. Мартеновская печь обычно вмещает 500 т стали. Она имеет широкий неглубокий под и низкий арочный свод, отражающий тепло в сторону пода. Газ и воздух вводятся с одного конца и сгорают над подом. Чем ниже содержание углерода, тем выше температура плавления. Для достижения температуры, при которой плавится сталь с минимальным содержанием углерода, применяют принцип регенерации тепла. На обоих концах печи имеются регенерационные камеры с такой же кирпичной насадкой, как и в кауперах доменной печи. Продукты сгорания пропускаются через одну из этих камер. Когда футеровка достаточно нагрета, направление потоков через печь меняется на обратное. Поступающие воздух и газ воспринимают тепло от кирпичей насадки, а отходящие газы нагревают вторую камеру. Таким образом достигается экономия топлива и повышается рабочая температура.

Мартеновская печь – крупное сооружение, и процесс выплавки стали занимает довольно много времени. На загрузку печи рудой, металлоломом и чугуном уходит ок. 5 ч, на расплавление – 4 ч и на рафинирование и корректировку окончательного состава стали – еще 3–4 ч. Чугун и металлолом могут загружаться в разных пропорциях в зависимости от потребности и экономических соображений.

Термохимический процесс плавки стали в мартеновской печи сложен. Как уже упоминалось, главными примесями чушкового чугуна являются кремний Si, углерод C, сера S и фосфор P.

Кремний реагирует с железной рудой [оксидом железа (III) Fe 2 O 3 ], давая в результате диоксид кремния SiO 2 и железо:

Углерод выгорает, образуя моноксид углерода CO и восстанавливая из руды железо:

Фосфор тоже, образуя пентоксид фосфора P 2 O 5 , высвобождает железо из руды:

Сера, реагируя с известью CaO и углеродом, образует сульфид кальция CaS и моноксид углерода CO:

Сульфид кальция и пентоксид фосфора переходят в шлак, плавающий на поверхности очищенного железа. Шлак представляет собой в основном силикат кальция CaSiO 3 , образующийся в реакции соединения диоксида кремния с известью:

В процессе плавки шлаку уделяется не меньше внимания, чем самой стали, так как хорошая сталь получается в результате реакций между шлаком и металлом.

Электрическая печь.

Электропечи сначала применялись только для выплавки качественных инструментальных и нержавеющих сталей, выплавлявшихся до этого в тиглях. Но постепенно электропечи стали играть важную роль в производстве малоуглеродистой стали из металлолома в тех случаях, когда не требуется передела чугуна из доменной печи. В настоящее время ок. 30% нерафинированной стали выплавляется в электропечах. Наиболее распространены дуговые электропечи. Под дуговой сталеплавильной печи облицован огнеупорной кирпичной кладкой, свод охлаждается водой и может сдвигаться в сторону для загрузки печи. Через три отверстия в своде вводятся угольные электроды. Между электродами и металлоломом на поду печи зажигается дуговой разряд. В большой печи ток дуги может достигать 100 000 А.

Плавка стали обычно производится следующим образом. Свод печи отводят в сторону, и на под печи осторожно загружают металлолом. После этого свод возвращают на место, а электроды опускают так, чтобы они на 2–3 см не доходили до верха загруженного металлолома. Зажигают дугу и по мере расплавления завалки постепенно увеличивают мощность. В печь вводят кислород для окисления углерода и кремния в завалке и известь для образования шлака. На этом этапе химия плавки такая же, как и в кислородно-конвертерном процессе. По окончании периода окисления отбирают пробу, анализируют ее и при необходимости корректируют состав. Затем выключают дугу, поднимают электроды, наклоняют печь и выпускают сталь в ковш.

Электросталеплавильный процесс находит также важное применение в вакуумной плавке стали. Для этого обычно пользуются индукционными электропечами. Сталь помещают в графитовый тигель, окруженный медным змеевиком индуктора. На индуктор подается переменное напряжение высокой частоты. Вихревые токи, наводимые индуктором в графитовом тигле, нагревают его, поскольку удельное сопротивление графита довольно велико. Если тигель с индуктором помещен в вакуумную камеру, то сталь, плавясь в вакууме, освобождается от кислорода и других растворенных газов. В результате получается очень чистая сталь, не содержащая оксидов. Вакуумная плавка дорогостояща и применяется лишь в тех случаях, когда требуется особо прочная и надежная сталь, например для шасси самолетов. Улучшение механических свойств стали в результате вакуумной плавки связано с отсутствием частиц оксидов, на которых в обычной стали часто зарождаются трещины.

Литье стали.

Заключительным этапом описанного выше процесса производства является литье стали в отдельные слитки или в непрерывный слиток. Для получения отдельных слитков сталь разливают по массивным чугунным изложницам. Как только сталь затвердевает, слитки отделяют от изложниц и еще горячими переносят в нагревательный колодец. Здесь большое количество слитков выдерживается при высокой температуре, пока они не будут готовы к прокатке.

Разливка стали по изложницам, «раздевание» слитков (отделение от изложниц), их перемещение в нагревательный колодец и последующее извлечение для прокатки требуют многочисленных транспортировочно-перегрузочных операций, обойтись без которых позволяет метод непрерывной разливки в слиток почти окончательной формы. Сталь заливается в водоохлаждаемый медный кристаллизатор, в котором затвердевание начинается с наружной поверхности. Сталь, вытягиваемая из кристаллизатора, дополнительно охлаждается до полного затвердевания водой, разбрызгиваемой форсунками.

Обработка давлением.

Стальному слитку должна быть придана форма, удобная для применения стали в качестве конструкционного материала. Чаще всего слитки обрабатывают методом горячей прокатки (после соответствующей подготовки). При таком методе плоская заготовка (сляб), пропускаемая между горизонтальными валками, приводимыми во вращение мощными электродвигателями, удлиняется и утоняется. Стан для первой прокатки горячих стальных слитков называется обжимным. Слиток вводится между валками, установленными на небольшое уменьшение толщины. После первого пропуска направление вращения валков изменяется на обратное, расстояние между ними уменьшается и слиток пропускается через них в обратном направлении. Такой процесс многократно повторяется, в результате чего слиток становится тоньше и длиннее. В то же время устраняются литьевые неоднородности металла. Горячая прокатка гомогенизирует сталь и повышает ее ударную вязкость.

При непрерывной прокатке между валками с гладкой бочкой слиток превращается в лист. Профилированные валки дают сортовой прокат разных профилей: простых (круг, квадрат, треугольник, полоса), фасонных (рельсы, двутавровые балки, швеллеры, уголковое железо) и специальных (колеса, бандажи и т.д.). Если для окончательной продукции заданы очень малые допуски на размеры, то она на заключительном этапе проходит холодную прокатку. При этом сначала размеры заготовки редуцируются приблизительно до нужных размеров горячей прокаткой, а затем сталь охлаждают до комнатной температуры и осуществляют чистовой пропуск через валки. В результате она выходит из валков с чистой и блестящей поверхностью хорошего качества.

Некоторые формы не могут быть получены прокаткой; в этом случае применяются ковка и штампование. Способы изменения формы металлов ковкой были известны еще в древности. Для ее современных методов характерны широкие масштабы – применение молотов и прессов с паровым или гидравлическим приводом, а также штампов и матриц с пуансонами. Металлическая заготовка помещается в полость, образуемую двумя штампами из закаленной стали. При сжатии штампов нагретый металл заготовки течет, заполняет полость и принимает нужную форму.

Контроль качества стали.

Контроль качества имеет первостепенное значение в производстве готового проката. Дефекты катаной стали могут быть вызваны неметаллическими включениями и пористостью. Поэтому сталь любого ответственного назначения на выходе из прокатного цеха проходит неразрушающий контроль. Важнейшие методы такого контроля – ультразвуковая и магнитная дефектоскопия.

Компьютерное управление.

Большого сокращения трудоемкости можно добиться путем применения компьютеров в автоматизированных системах управления (АСУ) прокаткой стали, доменным производством, планированием работы в цеху и т.д. Супервизорное управление с быстродействующим компьютером в роли центрального управляющего устройства необходимо для непрерывных процессов, тем более что такие процессы проще дискретных и их легче автоматизировать. Быстропротекающий кислородно-конвертерный процесс – один из наиболее перспективных методов непрерывного производства стали – также требует компьютерной супервизорной АСУ.

СВОЙСТВА СТАЛИ

Варьируя состав, можно получать стали с весьма различающимися свойствами – легированные, нержавеющие, инструментальные. Больше, чем всех других сортов, выплавляется углеродистой стали. Углеродистая сталь – это сплав железа с углеродом и марганцем. Как уже упоминалось, марганец добавляется для подавления вредного действия кислорода и серы, присутствующих в стали. Углеродом определяются механические свойства стали. Содержание углерода в стали может составлять от 0,1 до 1,2%. Сталь, содержащая 0,1–0,3% углерода, довольно прочна и достаточно пластична. Прокат такой стали в виде двутаврового профиля применяется в качестве строительных балок. Из тонкой листовой малоуглеродистой стали делают кузова автомобилей и консервные банки.

Одна из самых важных особенностей стали состоит в том, что ее свойства можно изменять в очень широком диапазоне простым изменением содержания углерода. Чем больше углерода в стали, тем больше ее предел прочности при растяжении, но тем меньше пластичность, т.е. деформация до разрушения. Нелегированная сталь со средним содержанием углерода пригодна для таких изделий, от которых требуются прочность и сопротивление износу, например для рельсов. Сталь, содержащая около 0,8% углерода, может быть закалена настолько, что это делает ее пригодной для изготовления режущих инструментов, таких, как сверла и ножи. Сталь с еще более высоким содержанием углерода служит материалом для бритвенных лезвий; она должна быть очень твердой и износостойкой, но от нее не требуется особой ударной вязкости.

Термообработка стали.

Термообработкой можно существенно изменять механические свойства стали. Для некоторых применений ее нагревают, а затем закаливают быстрым охлаждением. В отожженном состоянии (т.е. после медленного охлаждения) сталь даже с высоким содержанием углерода достаточно пластична для того, чтобы можно было придать ей форму нужного инструмента или другого изделия. Затем ее обычно закаливают. При этом предел прочности стали может увеличиться в 10 раз, а пластичность – во столько же раз уменьшиться. Чем больше углерода в стали, тем выше ее твердость после закалки. Закаленная специальная сталь пригодна для резания всех других металлов, кроме самых твердых.

В термообработке есть три важных момента. Сначала сталь нагревают до высокой температуры (обычно до красного каления, хотя марки с наивысшим содержанием углерода требуют нагрева до белого каления). За этим нагреванием следует быстрое охлаждение – закалка, – после чего сталь повторно нагревают, но теперь до сравнительно низкой температуры – «отпускают». При первом нагревании образуется твердый раствор углерода в железе. Если после такого нагрева сталь медленно охладить (отжиг), то растворенный углерод выпадет из раствора в виде частиц карбида углерода, в результате чего сталь останется довольно мягкой. При закалке же сталь охлаждается столь быстро, что карбид железа не успевает выделиться из раствора. Поскольку атомы углерода слишком велики для промежутков между атомами железа, кристаллическая структура закаленной стали оказывается сильно деформированной. Такая структура называется мартенситной; ей соответствуют крайне высокие твердость и хрупкость. Для уменьшения хрупкости закаленную сталь отпускают, т.е. нагревают до температуры 200–600° C, не достигающей температуры красного каления, и после некоторой выдержки снова охлаждают. При таком нагревании происходит частичное разложение мартенсита с выпадением из раствора избытка углерода. Чем выше температура отпуска, тем больше таких выделений и тем мягче (и пластичнее) сталь. Соответствующим отпуском можно получить любую степень твердости. Требуемая степень отпуска зависит от назначения стали. Например, если слишком сильно отпустить лезвие ножа, то оно будет быстро тупиться. Если же его недостаточно отпустить, то оно станет слишком хрупким и будет крошиться.

Самая ответственная часть термообработки – закалка. Она должна проводиться достаточно быстро, чтобы не произошло разложение твердого раствора углерода в железе, образовавшегося при повышенной температуре. Для этого сталь, нагретую до красного каления, можно опустить в холодную воду. Но быстро охладить можно лишь сравнительно небольшой объем стали. Удовлетворительная закалка нелегированной стали возможна только при толщине, не превышающей примерно 1,5 см, что существенно ограничивает возможности применения нелегированной стали в разного рода крупных станках и механизмах. Эта трудность отпадает при использовании легированных сталей.

Легированные стали.

Если в сталь добавить несколько процентов никеля, хрома или молибдена, то ее можно закалить до мартенситного состояния при гораздо меньшей скорости охлаждения, чем требуется для нелегированной стали. Дело в том, что твердый раствор, например, никеля и углерода в железе при охлаждении разлагается значительно медленнее раствора одного углерода в железе. Благодаря этому возможна полная закалка массивных изделий из легированной стали. Дополнительные легирующие элементы привносят и другие преимущества. Они повышают прочность и ударную вязкость стали, улучшают высокотемпературные прочностные характеристики. Состав, свойства и применения ряда типичных легированных сталей представлены в таблице. Легированные стали широко применяются в машиностроении.

Стальные конструкции.

Благодаря низкой стоимости и свойствам, нередко превосходящим свойства других материалов, сталь – это металл самого широкого применения. Поэтому даже форма и внешний вид очень многих вещей, с которыми мы встречаемся повседневно, в значительной мере определяются прочностью, пластичностью и коррозионной стойкостью стали и чугуна. Чугунные и стальные элементы зданий, оград и мостов могут служить прекрасным примером тесной связи между свойствами материала и дизайном. Пожалуй, больше всего сталь изменила внешность городов высотными зданиями – строениями, которые лишь благодаря стали или бетону, армированному сталью, способны нести тяжесть заполняющих каркас навесных стен из каменной кладки, листового металла и стекла.

Сталь сохраняет свое доминирующее положение в строительстве и машиностроении не только благодаря сочетанию низкой стоимости и высоких механических характеристик, но и потому, что в сталеплавильной промышленности были разработаны легированные стали с существенно улучшенными свойствами. Это уже отмечалось, когда речь шла о нержавеющих и быстрорежущих сталях. Создание же мартенситностареющей стали, полностью упрочняемой без закалки, и стойкой к атмосферной коррозии конструкционной стали, которая крайне медленно ржавеет с образованием защитного наружного слоя, делающего ненужной покраску, – это гарантия того, что сталь и впредь будет сохранять свое значение в жизни людей.

Таблица: Влияние некоторых элементов на сталь ; ПОРОШКОВАЯ МЕТАЛЛУРГИЯ .

Литература:

Основы металлургии , тт. 1–6. М., 1961–1973
Сталеплавильные производства , тт. 1–2. М., 1964


ВЛИЯНИЕ НЕКОТОРЫХ ЭЛЕМЕНТОВ НА СТАЛЬ
Типичные стали
(ок. 0,40% C)
Отличительная особенность Применение
Простая углеродистая
(0,40% C)
Хорошая прочность и обрабатываемость Рельсовые путевые болты; автомобильные оси; лесозаготовительные, дорожные, сельскохозяйственные машины; пружины, ножницы, инструменты по дереву
Среднемарганцовистая (1,75% Mn) -""- -""-
Простая хромистая
(0,95% Cr)
-""- -""-
Никелевая (0,30% С, 3,5% Ni) Ударная вязкость Детали пневмобуров и отбойных молотков, коленчатые валы
Ванадиевоуглеродистая
(0,5% C, 0,18% V)
Ударная прочность Детали и узлы локомотивов
Молибденоуглеродистая (0,20% C, 0,68% Mo) Теплостойкость Корпуса паровых котлов, оборудование для пара высокого давления
Высококремнистая листовая (4,00% Si) Высокая электрическая эффективность Трансформаторы, электромашинные генераторы тока, электродвигатели
Силикомарганцевая
(2,00% Si, 0,75% Mn)
Упругость Автомобильные и вагонные рессоры
Хромоникелевая
(0,60% Cr, 1,25% Ni)
Поверхностная упрочняемость Автомобильные коробки передач, поршневые пальцы, трансмиссии
Хромованадиевая
(0,95% Cr, 0,18% V)
Высокая прочность и твердость Автомобильные коробки передач, валы гребных винтов, шатуны
Хромомолибденовая
(0,95% Cr, 0,20% Mo)
Ударная, усталостная прочность, теплостойкость Самолетный силовой набор
Молибденоникелевая
(1,75% Ni, 0,35% Mo)
Усталостная прочность Железнодорожные подшипники, автомобильные коробки передач
Марганцовистомолибденовая (1,30% Mn, 0,30% Mo) Ударная и усталостная прочность

Сплавы железа с углеродом (стали, чугуны) являются наиболее распространенными материалами в машино- и приборостроении.

Железо (Fe) - блестящий светло-серый металл. Атомный номер 26, плотность 7,87 Мг/м 3 , температура плавления 1539 °С, температура кипения 2880 °С, модуль нормальной упругости 210 ГПа. Механические свойства железа зависят от его чистоты. Временное сопротивление при растяжении технически чистого железа составляет 300-400 МПа, предел текучести - 100-250 МПа, относительное удлинение - 30-50%, относительное сужение - 70-80%, Н В 60-90.

Углерод (С) в железоуглеродистых сплавах находится в химически связанном или свободном состоянии. Атомный номер 6, плотность 2,6 Мг/м 3 , температура плавления 4000 °С, температура кипения 4200 °С. Он имеет две кристаллические модификации - графит и алмаз. При нормальных условиях стабилен графит, имеющий гексагональную решетку; алмаз получается при высоких давлениях и температурах, имеет кубическую (метастабильную) решетку.

В зависимости от температуры и содержания углерода железоуглеродистые сплавы образуют ряд структурных составляющих (фаз).

Феррит (Ф) - твердый раствор внедрения углерода в а-железе, имеет кубическую объемно-центрированную решетку, максимальная растворимость при 727°С составляет 0,02%. Феррит магнитен, на диаграмме состояния Fe-С занимает область GPQ (рис. 1.7). Феррит характеризуется низкой прочностью (о в = 250 МПа, о 0 2 = = 120 МПа) и твердостью (НВ 80-100) и высокой пластичностью (5 = 50%; |/ = 80%).

Рис. 1.7. Диаграмма состояния железо-углерод (цементит) Аустенит (А) - твердый раствор внедрения углерода в у-желе- зе, имеет кубическую гранецентрированную решетку. Предельная растворимость углерода в у-железе при температуре 1147 °С - 2,14%. Аустенит немагнитен, на диаграмме состояния занимает область AESG. Он имеет твердость НВ 160 при 5 = 40-50%.

Цементит (Ц) - химическое соединение железа с углеродом (карбид железа Fe 2 С), содержит 6,67% С, температура плавления точно не установлена, принимается примерно равной 1260 °С. Цементит магнитен, характеризуется высокой твердостью (> Н В 800) и низкой пластичностью. Цементит является метастабильной фазой и при определенных условиях распадается с выделением свободного графита. В зависимости от условий образования различают цементит первичный, который образуется из жидкости при затвердевании расплава, вторичный - при распаде аустенита и третичный - при выделении углерода из феррита.

Графит представляет собой свободный углерод, он мягок, обладает низкой прочностью и электропроводностью. В чугунах и гра- фитизированной стали он содержится в виде включений. Форма графитовых включений оказывает влияние на механические и технологические свойства сплавов.

Перлит (77) - эвтектоидная механическая смесь феррита и цементита, содержащая 0,83% С; образуется при 727 °С в результате распада аустенита в процессе его охлаждения: Fe y -> Fe a (С) + Fe 3 C. Перлит может быть пластинчатым или зернистым. Это определяет механические свойства перлита. При комнатной температуре зернистый перлит имеет прочность о в = 800 МПа, пластичность 5= 15%, НВ 160-200.

Ледебурит (Л) - механическая смесь (эвтектика) аустенита и цементита, образующаяся из жидкого расплава при 1147 °С и содержании 4,3% С. Твердость НВ 600-700, хрупок. Так как при температуре ниже эвтектоидной (ниже 727 °С) аустенит превращается в перлит, то ледебурит ниже эвтектоидной прямой /Г"А"состоит из цементита и перлита.

Помимо упомянутых составляющих в железоуглеродистых сплавах могут быть неметаллические включения (соединения с кислородом, азотом, серой, фосфором и др.), которые с железом образуют различные фазы.

Критические точки на линиях диаграммы Fe - С принято обозначать буквой А с индексом г, если точка находится на кривой охлаждения, и с - на кривой нагрева. При индексах ги с ставится цифра, указывающая положение рассматриваемой точки на линиях. Так, критическую точку перехода ос- в у-железо при 911 °С обозначают^ - при нагреве и А г - при охлаждении.

Материаловедение: конспект лекций Алексеев Виктор Сергеевич

4. Классификация сплавов. Железо и его сплавы

Сталь и чугун – основные материалы в машиностроении. Они составляют 95 % всех используемых в технике сплавов.

Сталь – это сплав железа с углеродом и другими элементами, содержащий до 2,14 % углерода. Углерод – важнейшая примесь стали. От его содержания зависят прочность, твердость и пластичность стали. Кроме железа и углерода, в состав стали входят кремний, марганец, сера и фосфор. Эти примеси попадают в сталь в процессе выплавки и являются ее неизбежными спутниками.

Чугун – сплав на железной основе. Отличие чугуна от стали заключается в более высоком содержании в нем углерода – более 2,14 %. Наибольшее распространение получили чугуны, содержащие 3–3,5 % углерода. В состав чугунов входят те же примеси, что и в стали, т. е. кремний, марганец, сера и фосфор. Чугуны, у которых весь углерод находится в химическом соединении с железом, называют белыми (по виду излома), а чугуны, весь углерод которых или большая его часть представляет графит, получили название серых. В белых чугунах всегда имеется еще одна структурная составляющая – ледебурит. Это эвтектика, т. е. равномерная механическая смесь зерен аустенита и цементита, получающаяся в процессе кристаллизации, в ней 4,3 % углерода. Ледебурит образуется при температуре +1147 °C.

Феррит – твердый раствор небольшого количества углерода (до 0,04 %) и других примесей в? – железе. Практически это чистое железо. Цементит – химическое соединение железа с углеродом – карбид железа.

Перлит – равномерная механическая смесь в сплаве феррита и цементита. Такое название эта смесь получила потому, что шлиф при ее травлении имеет перламутровый оттенок. Так как перлит образуется в результате процессов вторичной кристаллизации, его называют эвтектоидом. Он образуется при температуре +727 °C. В нем содержится 0,8 % углерода.

Перлит имеет две разновидности. Если цементит в нем расположен в виде пластинок, его называют пластинчатым, если же цементит расположен в виде зерен, перлит называют зернистым. Под микроскопом пластинки цементита кажутся блестящими, потому что обладают большой твердостью, хорошо полируются и при травлении кислотами разъедаются меньше, чем пластинки мягкого феррита.

Если железоуглеродистые сплавы нагреть до определенных температур, произойдет аллотропическое превращение? -железа в? -железо и образуется структурная составляющая, которая называется аустенитом.

Аустенит представляет собой твердый раствор углерода (до 2,14 %) и других примесей в? -железе. Способность углерода

растворяться в железе неодинакова при различных температурах. При температуре +727 °C ? -железо может растворять не более 0,8 % углерода. При этой же температуре происходит распад аустенита с образованием перлита. Аустенит – мягкая структурная составляющая. Он отличается большой пластичностью, не обладает магнитными свойствами.

При изучении структурных составляющих железоуглеродистых сплавов установлено, что они при комнатной температуре всегда состоят из двух структурных элементов: мягкого пластичного феррита и твердого цементита, упрочняющего сплав.

Из книги Работы по металлу автора Коршевер Наталья Гавриловна

Железо Оно было известно уже в древности. А в Средневековье различали не только сталь, железо и чугун, но и различные их марки. Например, клинки оружия могли изготавливаться из обычной стали или из дамасской – знаменитого булата. Кузнецы того времени, конечно же, не знали,

Из книги Загадка булатного узора автора Гуревич Юрий Григорьевич

Медь и сплавы Довольно часто домашние слесари отдают предпочтение меди (удельный вес 9,0 г/см2), поскольку ее мягкость и пластичность позволяют добиваться точности и высокого качества при изготовлении всевозможных деталей и изделий.Чистая (красная) медь – прекрасный

Из книги Материаловедение: конспект лекций автора Алексеев Виктор Сергеевич

«Белое железо» индийского царя Пора Во второй половине I тысячелетия до нашей эры железо знали уже многие страны и народы. Из него изготовляли плуг и топор, кинжал и меч. Оружейники старались сделать кинжалы, мечи прочными и упругими, твердыми и острыми. В древности это

Из книги Боевые корабли автора Перля Зигмунд Наумович

ЛЕКЦИЯ № 5. Сплавы 1. Строение металлов Металлы и их сплавы – основной материал в машиностроении. Они обладают многими ценными свойствами, обусловленными в основном их внутренним строением. Мягкий и пластичный металл или сплав можно сделать твердым, хрупким, и наоборот.

Из книги Материалы для ювелирных изделий автора Куманин Владимир Игоревич

1. Диаграмма железо-цементит Диаграмма железо-цементит охватывает состояние железоуглеродистых сплавов, которые содержат до 6,67 % углерода. Рис. 7. Диаграмма состояния железоуглеродистых сплавов (сплошные линии – система Fe-Fe 3 C; штриховые – система Fe-C)Углеродистые

Из книги Фильтры для очистки воды автора Хохрякова Елена Анатольевна

2. Медные сплавы Медь относится к числу металлов, известных с глубокой древности. Раннему знакомству человека с медью способствовало то, что она встречается в природе в свободном состоянии в виде самородков, которые иногда достигают значительных размеров. В настоящее

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

3. Алюминиевые сплавы Название «алюминий» происходит от латинского слова alumen – так за 500 лет до н. э. называли алюминиевые квасцы, которые использовались для протравливания при крашении тканей и дубления кож.По распространенности в природе алюминий занимает третье

Из книги автора

4. Титановые сплавы Титан – металл серебристо-белого цвета. Это один из наиболее распространенных в природе элементов. Среди других элементов по распространенности в земной коре (0,61 %) он занимает десятое место. Титан легок (плотность его 4,5 г/см 3), тугоплавок

Из книги автора

5. Цинковые сплавы Сплав цинка с медью – латунь – был известен еще древним грекам и египтянам. Но выплавка цинка в промышленных масштабах началась лишь в XVII в.Цинк – металл светло-серо-голубоватого цвета, хрупкий при комнатной температуре и при 200 °C, при нагревании до

Из книги автора

Пар и железо В последние десятилетия XVIII века на заводах и фабриках Европы произошли большие изменения. Были изобретены паровая и другие машины для металлургических, машиностроительных и текстильных заводов и фабрик. Машинное производство вытесняло ручной труд. На

Из книги автора

7.4. Сплавы меди, имитирующие золотые и серебряные сплавы С целью удешевления художественных изделий при производстве недорогих украшений широко используются томпак, латунь, мельхиор, нейзильбер; при изготовлении художественных изделий – бронзы.Сплавы меди с цинком,

Из книги автора

10. Серебро и его сплавы Серебро – химический элемент, металл. Атомный номер 47, атомный вес 107,8. Плотность 10,5 г/см3. Кристаллическая решетка – гранецентрированная кубическая (ГЦК). Температура плавления 963 °C, кипения 2865 °C. Твердость по Бринеллю 16,7.Серебро – металл белого

Из книги автора

11. Золото и его сплавы Золото – химический элемент, металл. Атомный номер 79, атомный вес 196,97, плотность 19,32 г/см3. Кристаллическая решетка – кубическая гранецентрировапная (ГЦК). Температура плавления 1063 °C, кипения 2970 °C. Твердость по Бринеллю – 18,5.Золото – металл желтого

Из книги автора

Железо общее Железо – один из самых распространенных элементов в природе. Его содержание в земной коре составляет около 4,7 % по массе, поэтому железо, с точки зрения его распространенности в природе, принято называть макроэлементом.В природной воде железо содержится в

Из книги автора

27. Строение и свойства железа; метастабильная и стабильная фазовые диаграммы железо-углерод. Формирование структуры углеродистых сталей. Определение содержания углерода в стали по структуре Сплавы железа с углеродом являются самыми распространенными металлическими

Из книги автора

47. Титан и его сплавы Титан и сплавы на его основе обладают высокой коррозионной стойкостью и удельной прочностью. Недостатки титана: его активное взаимодействие с атмосферными газами, склонность к водородной хрупкости.Азот, углерод, кислород и водород, упрочняя титан,

Сплавы железа - это металлические сплавы на основе железа. До начала XIX века к сплавам железа относили преимущественно Fe-C (с примесями Si, Mn, S, P), получившие название сталей и чугунов. Возрастающие требования техники к металлическим материалам, прежде всего в отношении их механических свойств, жаропрочности, коррозионной стойкости в различных агрессивных средах привели к созданию новых сплавов железа содержащих Cr, Ni, Si, Mo, W и др.

В настоящее время к сплавам железа относят: углеродистые стали, чугуны, легированные стали, содержащие кроме углерода другие элементы, и стали с особыми физико-химическими и механическими свойствами.

Кроме того для введения в сталь легирующих элементов применяются особые сплавы железа, получившие название ферросплавов.

В технике сплавы железа принято называть черными металлами, а их производство - черной металлургией.

Чугун отличается от стали более высоким содержанием углерода и своими свойствами. Он хрупок, но обладает хорошими литейными свойствами. Чугун дешевле стали. Основная масса чугуна перерабатывается в сталь.

Элементы, специально вводимые в сталь для изменения ее свойств, называются легирующими элементами, а сталь, содержащая такие элементы, называется легированной. К важнейшим легирующим элементам относятся Cr, Ni, Mn, W, Mo. Широко применяются жаростойкие сплавы на основе никеля (нихром, содержащий никель и хром и другие).

Из медно-никелевых сплавов (мельхиор и другие) изготавливают монеты, украшения, предметы домашнего обихода.

Сплавы железа распространены в промышленности наиболее широко. Основные из них - сталь и чугун - представляют собой сплавы железа с углеродом. Для получения заданных свойств в сталь и чугун вводят легирующие элементы. Ниже рассмотрено строение и фазовые превращения в сплавах железо-углерод, а также фазы в сплавах железа с легирующими элементами.

1. КОМПОНЕНТЫ И ФАЗЫ В СИСТЕМЕ ЖЕЛЕЗО - УГЛЕРОД

Железо - металл сероватого цвета. Атомный номер 26, атомная масса 55,85, атомный радиус 0,127 нм. Чистое железо, которое может быть получено в настоящее время, содержит технические сорта Температура плавления железа 1539 °С. Железо имеет две полиморфные модификации и Модификация -железа существует при температурах ниже 910 °С и выше (рис. 82). В интервале температур 1392-1539 °С a-железо нередко обозначают как -железо.

Кристаллическая решетка а-железа - объемно центрированный куб с периодом решетки 0,28606 нм. До температуры -железо магнитно (ферромагнитно). Температуру соответствующую магнитному превращению, т. е. переходу из ферромагнитного состояния в парамагнитное, называют точкой Кюри и обозначают

Плотность а-железа .

Рис. 82. Кривая охлаждения чистого железа (а) и схема микроструктуры феррита и аустенита -железо существует при температуре 910- 1392 °С; оно парамагнитно.

Кристаллическая решетка -железа гранецентрированная кубическая нм при

Критическую точку превращения ауфис. 82) при обозначают соответственно (при нагреве) и (при охлаждении). Критическую точку перехода при обозначают (при нагреве) и (при охлаждении).

Углерод является неметаллическим элементом II периода IV группы периодической системы, атомный номер 6, плотность температура плавления атомный радиус 0,077 нм. Углерод полиморфен. В обычных условиях он находится в виде модификации графита, но может существовать и в виде метаста-бильной модификации алмаза.

Углерод растворим в железе в жидком и твердом состояниях, а также может быть в виде химического соединения - цементита, а в вшсокоуглеродистых сплавах и в виде графита.

В системе различают следующие фазы: жидкий сплав, твердые растворы-феррит и аустенит, а также цементит и графит.

Феррит - твердый раствор углерода и других примесей в -железе. Различают низкотемпературный -феррит с растворимостью углерода до и высокотемпературный -феррит в

предельной растворимостью углерода Атом углерода располагается в решетке феррита в центре грани куба, где помещается сфера радиусом 0,29 атомного радиуса железа, а также в вакансиях, на дислокациях и т. д. Под микроскопом феррит выявляется в виде однородных полиэдрических зерен .

Феррит (при 0,06 % С) . имеет примерно следующие механические свойства:

Аустенит - твердый раствор урлерода и других примесей в Атом углерода в решетке -железа располагается в центре элементарной ячейки (см. рис. 29, б), в которой может поместиться сфера радиусом атомный радиус железа) и в дефектных областях кристалла.

Различные объемы элементарных сфер в ОЦК и ГЦК решетках и предопределили значительно большую растворимость углерода в -железе по сравнению с растворимостью в -железе. Аустенит обладает высокой пластичностью, низкими пределами текучести и прочности. Микроструктура аустенита - полиэдрические зерна (рис. 82, в).