Понятие радиоэлектроники. Этапы развития радиотехники и электроники Основные принципы передачи и приема информации

История и развитие радиотехники

Предметом электронной техники является теория и практика применения электронных, ионных и полупроводниковых приборов в устройствах, системах и установках для различных областей народного хозяйства. Гибкость электронной аппаратуры, высокие быстродействия, точность и чувствительность открывают новые возможности во многих отраслях науки и техники.

Радио (от латинского “radiare” - излучать, испускать лучи) -

1). Способ беспроволочной передачи сообщений на расстояние посредством электромагнитных волн (радиоволн), изобретённый русским учёным А.С. Поповым в 1895 г. ;

2). Область науки и техники, связанная с изучением физических явлений, лежащих в основе этого способа, и с его использованием в связи, вещании, телевидении, локации и т.д.

Радио, как уже было сказано выше, открыл великий русский учёный Александр Степанович Попов. Датой изобретения радио принято считать 7 мая 1895 г., когда А.С. Попов выступил с публичным докладом и демонстрацией работы своего радиоприёмника на заседании Физического отделения Русского физико-химического общества в Петербурге.

Развитие электроники после изобретения радио можно разделить на три этапа: радиотелеграфный, радиотехнический и этап собственно электроники.

В первый период (около 30 лет) развивалась радиотелеграфия и разрабатывались научные основы радиотехники. С целью упрощения устройства радиоприёмника и повышения его чувствительности в разных странах велись интенсивные разработки и исследования различных типов простых и надёжных обнаружителей высокочастотных колебаний - детекторов.

В 1904 г. была построена первая двухэлектродная лампа (диод), которая до сих пор используется в качестве детектора высокочастотных колебаний и выпрямителя токов технической частоты, а в 1906 г. появился карборундовый детектор.

Трёхэлектродная лампа (триод) была предложена в 1907 г. В 1913 г. была разработана схема лампового регенеративного приёмника и с помощью триода были получены незатухающие электрические колебания. Новые электронные генераторы позволили заменить искровые и дуговые радиостанции ламповыми, что практически решило проблему радиотелефонии. Внедрению электронных ламп в радиотехнику способствовала первая мировая война. С 1913 г. по 1920 г. радиотехника становится ламповой.

Первые радиолампы в России были изготовлены Н.Д. Папалекси в 1914 г. в Петербурге. Из-за отсутствия совершенной откачки они были не вакуумными, а газонаполненными (с ртутью). Первые вакуумные приёмно - усилительные лампы были изготовлены в 1916 г. М.А. Бонч-Бруевичем. Бонч-Бруевич в 1918 г. возглавил разработку отечественных усилителей и генераторных радиоламп в Нижегородской радиолаборатории. Тогда был создан в стране первый научно - радиотехнический институт с широкой программой действий, привлёкший к работам в области радио многих талантливых учёных, молодых энтузиастов радиотехники. Нижегородская лаборатория стала подлинной кузницей кадров радиоспециалистов, в ней зародились многие направления радиотехники, в дальнейшем ставшие самостоятельными разделами радиоэлектроники.

В марте 1919 г. начался серийный выпуск электронной лампы РП-1. В 1920 г. Бонч-Бруевич закончил разработку первых в мире генераторных ламп с медным анодом и водяным охлаждением мощностью до 1 кВт, а в 1923 г. - мощностью до 25 кВт. В Нижегородской радиолаборатории О.В. Лосевым в 1922 г. была открыта возможность генерировать и усиливать радиосигналы с помощью полупроводниковых приборов. Им был создан безламповый приёмник - кристадин. Однако в те годы не были разработаны способы получения полупроводниковых материалов, и его изобретение не получило распространения.

Во второй период (около 20 лет) продолжало развиваться радиотелеграфирование. Одновременно широкое развитие и применение получили радиотелефонирование и радиовещание, были созданы радионавигация и радиолокация. Переход от радиотелефонирования к другим областям применения электромагнитных волн стал возможен благодаря достижениям электровакуумной техники, которая освоила выпуск различных электронных и ионных приборов.

Переход от длинных волн к коротким и средним, а также изобретение схемы супергетеродина потребовали применения ламп более совершенных, чем триод.

В 1924 г. была разработана экранированная лампа с двумя сетками (тетрод), а в 1930 - 1931 г.г. - пентод (лампа с тремя сетками). Электронные лампы стали изготовлять с катодами косвенного подогрева. Развитие специальных методов радиоприёма потребовало создания новых типов многосеточных ламп (смесительных и частотно - преобразовательных в 1934 - 1935 г.г.). Стремление уменьшить число ламп в схеме и повысить экономичность аппаратуры привело к разработке комбинированных ламп.

Освоение и использование ультракоротких волн привело к усовершенствованию известных электронных ламп (появились лампы типа “желудь”, металлокерамические триоды и маячковые лампы), а также разработке электровакуумных приборов с новым принципом управления электронным потоком - многорезонаторных магнетронов, клистронов, ламп бегущей волны. Эти достижения электровакуумной техники обусловили развитие радиолокации, радионавигации, импульсной многоканальной радиосвязи, телевидения и др.

Одновременно шло развитие ионных приборов, в которых используется электронный разряд в газе. Был значительно усовершенствован изобретённый ещё в 1908 г. ртутный вентиль. Появились газотрон (1928-1929 г.г.), тиратрон (1931 г.), стабилитрон, неоновые лампы и т.д.

Развитие способов передачи изображений и измерительной техники сопровождалось разработкой и усовершенствованием различных фотоэлектрических приборов (фотоэлементы, фотоэлектронные умножители, передающие телевизионные трубки) и электронографических приборов для осциллографов, радиолокации и телевидения.

В эти годы радиотехника превратилась в самостоятельную инженерную науку. Интенсивно развивались электровакуумная промышленность и радиопромышленность. Были разработаны инженерные методы расчёта радиотехнических схем, проведены широчайшие научные исследования, теоретические и экспериментальные работы.

И последний период (60-е-70-е годы) составляет эпоху полупроводниковой техники и собственно электроники. Электроника внедряется во все отрасли науки, техники и народного хозяйства. Являясь комплексом наук, электроника тесно связана с радиофизикой, радиолокацией, радионавигацией, радиоастрономией, радиометеорологией, радиоспектроскопией, электронной вычислительной и управляющей техникой, радиоуправлением на расстоянии, телеизмерениями, квантовой радиоэлектроникой и т.д.

В этот период продолжалось дальнейшее усовершенствование электровакуумных приборов. Большое внимание уделяется повышению их прочности, надёжности, долговечности. Разрабатывались бесцокольные (пальчиковые) и сверхминиатюрные лампы, что даёт возможность снизить габариты установок, насчитывающих большое количество радиоламп.

Продолжались интенсивные работы в области физики твёрдого тела и теории полупроводников, разрабатывались способы получения монокристаллов полупроводников, методы их очистки и введения примесей. Большой вклад в развитие физики полупроводников внесла советская школа академика А.Ф.Иоффе.

Полупроводниковые приборы быстро и широко распространились за 50-е-70-е годы во все области народного хозяйства. В 1926 г. был предложен полупроводниковый выпрямитель переменного тока из закиси меди. Позднее появились выпрямители из селена и сернистой меди. Бурное развитие радиотехники (особенно радиолокации) в период второй мировой войны дало новый толчок к исследованиям в области полупроводников. Были разработаны точечные выпрямители переменных токов СВЧ на основе кремния и германия, а позднее появились плоскостные германивые диоды. В 1948 г. американские учёные Бардин и Браттейн создали германиевый точечный триод (транзистор), пригодный для усиления и генерирования электрических колебаний. Позднее был разработан кремниевый точечный триод. В начале 70-х годов точечные транзисторы практически не применялись, а основным типом транзистора являлся плоскостной, впервые изготовленный в 1951 г. К концу 1952 г. были предложены плоскостной высокочастотный тетрод, полевой транзистор и другие типы полупроводниковых приборов. В 1953 г. был разработан дрейфовый транзистор. В эти годы широко разрабатывались и исследовались новые технологические процессы обработки полупроводниковых материалов, способы изготовления p-n- переходов и самих полупроводниковых приборов. В начале 70-х годов, кроме плоскостных и дрейфовых германиевых и кремниевых транзисторов, находили широкое распространение и другие приборы, использующие свойства полупроводниковых материалов: туннельные диоды, управляемые и неуправляемые четырёхслойные переключающие приборы, фотодиоды и фототранзисторы, варикапы, терморезисторы и т.д.

Развитие и совершенствование полупроводниковых приборов характеризуется повышением рабочих частот и увеличением допустимой мощности. Первые транзисторы обладали ограниченными возможностями (предельные рабочие частоты порядка сотни килогерц и мощности рассеяния порядка 100 - 200 мвт) и могли выполнять лишь некоторые функции электронных ламп. Для того же диапазона частот были созданы транзисторы с мощностью в десятки ватт. Позднее были созданы транзисторы, способные работать на частотах до 5 МГц и рассеивать мощность порядка 5 вт, а уже в 1972 г. были созданы образцы транзисторов на рабочие частоты 20 - 70 МГц с мощностями рассеивания, достигающими 100 вт и более. Маломощные же транзисторы (до 0,5 - 0,7 вт) могут работать на частотах свыше 500 МГц. Позже появились транзисторы, работающие на частотах порядка 1000 МГц. Одновременно велись работы по расширению диапазона рабочих температур. Транзисторы, изготовленные на основе германия, имели первоначально рабочие температуры не выше +55 ¸ 70 °С, а на основе кремния - не выше +100 ¸ 120 °С. Созданные позже образцы транзисторов на арсениеде галлия оказались работоспособными при температурах до +250 °С, и их рабочие частоты в итоге довелись до 1000 МГц. Есть транзисторы на карбиде, работающие при температурах до 350 °С. Транзисторы и полупроводниковые диоды по многим показателям в 70-е годы превосходили электронные лампы и в итоге полностью вытеснили их из областей электроники.

Перед проектировщиками сложных электронных систем, насчитывающих десятки тысяч активных и пассивных компонентов, стоят задачи уменьшения габаритов, веса, потребляемой мощности и стоимости электронных устройств, улучшения их рабочих характеристик и, что самое главное, достижения высокой надёжности работы. Эти задачи успешно решает микроэлектроника - направление электроники, охватывающее широкий комплекс проблем и методов, связанных с проектированием и изготовлением электронной аппаратуры в микроминиатюрном исполнении за счёт полного или частичного исключения дискретных компонентов.

Основной тенденцией микроминиатюризации является “интеграция” электронных схем, т.е. стремление к одновременному изготовлению большого количества элементов и узлов электронных схем, неразрывно связанных между собой. Поэтому из различных областей микроэлектроники наиболее эффективной оказалась интегральная микроэлектроника, которая является одним из главных направлений современной электронной техники. Сейчас широко используются сверх большие интегральные схемы, на них построено всё современное электронное оборудование, в частности ЭВМ и т.д.

Используемая литература:

1. Словарь иностранных слов. 9-е изд. Издательство “Русский язык” 1979 г., испр. - М. : “Русский язык”, 1982 г. - 608 с.

2. Виноградов Ю.В. “Основы электронной и полупроводниковой техники”. Изд. 2-е, доп. М., “Энергия”, 1972 г. - 536 с.

3. Журнал “Радио”, номер 12, 1978 г.

История и развитие радиотехники Предметом электронной техники является теория и практика применения электронных, ионных и полупроводниковых приборов в устройствах, системах и установках для различных областей народного хозяйства. Гибкость эл

Введение в образовательную программу "Радиоэлектроника".

Конспект занятия

I. Организационный момент

(Слайд 1)

Добрый день, дорогие ребята! Я руководитель детского творческого объединения "Радиоэлектроника" Центра дополнительного образования детей Соболев И.В.

Сегодня на занятии я хочу вам предложить совершить небольшое путешествие в мир радиотехники и электроники.

II. Подготовительный этап

Представьте …каменный век, затем - бронзовый век. 19 столетие – век пара и электричества, а как же назвать наше время?

Век атома, электричества, связи, телекоммуникаций, компьютеризации… Наше время недаром называют веком атома, космическим веком, веком связи и телекоммуникаций…

Прошло-то чуть более ста лет, как было изобретено радио, а попробуйте современного человека оставить без радио, телевидения, компьютера.

(Слайд 2)

А ведь все начиналось с простого. Более 2,5 тысяч лет назад греки описали явление понятное только им. Притягивание легких тел янтарной палочкой натертой шерстью. Назвали они это явление электричеством (по-гречески янтарь означает "электрон"). А вот заставили люди работать электрон чуть более 200 лет назад. Новый вид энергии стал настолько универсальным, что сейчас трудно представить нашу жизнь без электричества.

III. Основная часть

(Слайд 3)

- Что такое электричество? (учащихся отвечают на вопросы)

Электричество – это возможность перебрасывать энергию на огромные расстояния. И очень простые, удобные средства транспорта – не труба с горячим паром, не состав угля – нужен всего лишь медный или алюминиевый проводник, чтобы миллиарды тружеников-электронов прибыли к месту работы.

Электричество – это возможность делить энергию на любые порции и распределять её между огромным числом потребителей: провёл провод в квартиру и пользуйся сколько нужно.

Электричество – это мгновенное превращение полученной энергии в любую нужную тебе форму: в свет, тепло, механическое движение. Это компактные простые и яркие источники света, компактные простые электромеханические двигатели (представьте себе, что на магнитофон установлен бензиновый мотор) и масса самых важных устройств и процессов, которых без электричества вообще не было бы (ускоритель атомных частиц, телевизор, компьютер). Одним словом, у электричества достаточно достоинств, чтобы было выгодно сначала превращать другие виды энергии в электроэнергию, а затем по мере необходимости производить обратное превращение.

А кто из вас может мне подсказать, какие виды энергии вы знаете для получения электричества, или правильнее сказать электрического тока? (учащиеся отвечают на вопрос).

Какие вещества или материалы проводят электрический ток?

ПОКАЗ УСТРОЙСТВА.... (Металл. пластик, вода, человек....)

Таким образом, на основе быстро развивающейся радиотехники и использования достижений многих наук возникла РАДИОЭЛЕКТРОНИКА и очень скоро стала необходимой практически во всех сферах человеческой деятельности.

Термин "радиоэлектроника" объединяет обширный комплекс областей науки и техники, связанных с проблемами передачи, приёма и преобразований информации с помощью электрических колебаний и электромагнитных волн.

(Слайд 4)

Радиоэлектроника включает радиотехнику, электронику, светотехнику и ряд новых областей: полупроводниковую и микроэлектронику, акусто-электронику и др.

Показ работ изготовленных в т/о....

к какому типу относятся эти устройства?

Так вот: радиоэлектроника – это ещё и умелое управление потоком электронов.

Создано множество деталей, с помощью которых можно увидеть, услышать и даже ощутить энергию на расстоянии.

Радиомикрофон...(показ в действии)...

И всё это – умение управлять потоком электронов.

Какие радиодетали вы знаете? (учащихся отвечают на вопрос).

Современный мир насыщен электронной аппаратурой и каждый из нас должен иметь хотя бы минимальный набор знаний, умений и навыков пользования сложной бытовой техникой. Сегодня электротехника применяется повсюду: с ней могут встретиться лётчик и врач, биохимик и экономист, металлург и музыкант. Да и какую бы профессию не выбрал человек, всюду он встречается с электроникой. И каждый, кто занимается практической электроникой, прекрасно понимает, что это приятное дело окажется полезным для человека любой профессии.

(Слайд 5)

На занятиях в творческом объединении «Радиоэлектроника» изучаются различные радиоэлементы, принцип их действия, применение, включая интегральные микросхемы, которые являются основой для построения современных радиоэлектронных устройств. Учащиеся лаборатории изготавливают, конструируют электронные игрушки, приборы учатся работать со справочной литературой и специальной технической литературой, работают с измерительными приборами.

Ещё один момент – радиотехническое конструирование не только учит, но и воспитывает. Оно делает человека более сообразительным, находчивым, изобретательным, собранным, чётким, аккуратным. В привычку входит работать быстро и тщательно проверять сделанное. Собирая электронные схемы, налаживая их, отыскивая какую-нибудь неисправность, вы учитесь логически мыслить, рассуждать, самостоятельно добывать новые знания.

IV. Практическая часть

Сейчас мы с вами перейдём к практической части нашего занятия.

Перед вами: "Электрический фонарик"

Из каких электрических частей он состоит?

Из каких элементов состоит простая электрическая цепь.

(Слайд 6)

Источник тока
- Потребитель
- Ключ
- Провода (проводники)

(Слайд 7), (Слайд 8), (Слайд 9), (Слайд 10)

ВОПРОСЫ и показ элементов.

(Слайд 11)

ПРАКТИКА ОБУЧАЮЩИХСЯ

1) Схема электрического фонарика

2) Соберите схему цепи, содержащей один гальванический элемент и две лампы накаливания, каждую из которых можно включать отдельно друг от друга.

3) Соберите схему соединения элемента питания, лампы и двух выключателей (кнопок), расположенных так, чтобы можно было включить лампу из двух разных мест.

4) Схема с двойным переключателем.

5) Переключатель и электродвигатель.

V. Подведение итогов занятия

Дорогие ребята, наше путешествие в мир радиоэлектроники подошло к концу!

Что нового вы узнали сегодня на занятии?

Какие радиоэлементы и их обозначения вы узнали?

Какие электрические схемы мы собрали?

Какова роль электрического тока в нашей жизни?

Дорогие, ребята, большое спасибо вам за работу. Я думаю, что вы уйдёте с сегодняшнего занятия с хорошим настроением.

В настоящее время трудно представить область науки и техники, где не использовались бы достижения радиотехники. Уже прочно вошло в быт не только звуковое и телевизионное вещание, но и сотовая телефония, космическая телефония, персональные средства связи, пейджинговая связь, компьютерная радиоэлектроника, управление бытовыми приборами, управление наземными, морскими, воздушными транспортными средствами и др. Идет бурное развитие телеметрических систем, радиолокационных систем наземного, воздушного и космического базирования и систем связи с освоением новых радиочастотных диапазонов. Интенсивно ведутся работы по созданию техники связи в микроволновом диапазоне частот.

С развитием цифровой техники актуальность использования радиотехнических и радиоэлектронных устройств и систем не только не уменьшается, а увеличивается. К таким системам можно отнести системы цифрового звукового и телевизионного вещания. Уже сейчас решаются вопросы по массовому внедрению цифрового телевизионного вещания. Развитие высоких технологий привело к возникновению микро- и наноэлектронной базы.

Достаточно отметить, что современное воздушное судно имеет на своем борту более сотни различных радиоэлектронных средств навигации, локации, сопровождения и обеспечения связи на протяжении всего времени полета. Существующие спутниковые системы обеспечивают навигацию и сопровождение не только межконтинентальных лайнеров, но даже индивидуальных транспортных средств, личных автомобилей и самолетов. Возможность использования последних достижений радиотехники стало доступно и рядовым индивидуальным потребителям.

Особую роль в развитии радиотехники и радиоэлектроники в настоящее время играет технология и изготовление узлов и деталей. Современные беспроводные системы связи представлены широким ассортиментом поставляемых на рынок изделий. С ростом сложности радиоэлектронных систем возрастает и потребность в их обслуживании, управлении, не ухудшая их технических характеристик. С этой задачей может справиться только автоматизированная система управления и контроля, разработанная на базе микроконтроллеров и микропроцессоров. Для обеспечения гибкости проектирования и изготовления современные системы проектирования используют приемы программной схемотехники, т.е. на уровне отладки программного продукта. С изменением требований технических характеристик и сервиса обслуживания достаточно лишь ввести или «прошить» новую программу работы контроллера радиоэлектронной системы.

В настоящее время идет бурное развитие новых информационных технологий передачи данных, так называемая беспроводная технология bluetooth. Данная технология позволяет создать локальную компьютерную сеть в радиусе 20…100 метров, обеспечивающая работу целого комплекса устройств: компьютер, мобильный телефон, принтер, различную бытовую технику т.д. Используемый диапазон рабочих частот в настоящее время определен 2,4-2,4835 ГГц. Такая технология беспроводной связи позволяет управлять различными устройствами, как на основе компьютера, так и без его использования. Практически все устройства уже обладают определенными узлами обработки, преобразования и передачи информации.

Рис. 1.38 Области применения беспроводной технологии передачи данных bluetooth

Основным элементом, обеспечивающим беспроводную связь, являются адаптеры Bluetooth, подключаемые к USB-порту компьютера.


Рис. 1.39 Адаптер Bluetooth


Рис. 1.40 Способы подключения оборудования по технологии Bluetooth


Рис. 1.41 Гарнитура, обеспечивающая работу устройств по технологии Bluetooth

Следует отметить огромную роль радиотехнических средств в исследовании атмосферы, околоземного пространства, планет солнечной системы, ближнего и дальнего космоса. Последние достижения в освоении солнечной системы, планет и их спутников является наглядным подтверждением.


Рис. 1.42 Изображение поверхности планеты Венера, переданное с посадочного модуля советской межпланетной станции Венера-13 (1 марта 1982 год)


Рис. 1.43 Изображение поверхности планеты Марс, переданное с американского марсохода Opportunity (2004 год)

С усложнением электромагнитной обстановки возникают задачи разработки способов и средств обеспечения защиты радиотехнических систем от случайных и искусственных помех.
Наряду с этим одновременно разрабатываются также методы и техника создания помех радиолокационным станциям, системам сопровождения и наведения и различного рода радиовзрывателей, а также системы перехвата несанкционированных источников радиоизлучения.

Именно высококвалифицированный специалист в области радиотехники, радиоэлектроники и высоких информационных технологий передачи, приема и обработки информации определяет уровень развития общества в целом. Как распорядиться всеми достижениями разума и каково последствие научно-технического прогресса зависит только от тебя - радиоинженера будущего.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

Министерство обороны Российской Федерации

Черноморское высшее военно-морское училище ордена Красной Звезды имени П.С. Нахимова

Факультет радио техники и информационной защиты

Кафедра радиотехнических систем

по учебной дисциплине «Введение в радио технику»

на тему «Этапы развития радиотехники и электроники»

Выполнила

Пузанкова С.О.

Проверил

Краснов Л.М.

Севастополь 2016

ВВЕДЕНИЕ

1. ИСТОРИЯ И РАЗВИТИЕ РАДИОТЕХНИКИ

2. ИСТОРИЯ РАЗВИТИЯ ЭЛЕКТРОНИКИ

3. ЭТАПЫ РАЗВИТИЯ ЭЛЕКТРОНИКИ

4. РАДИОТЕХНИКА И ЭЛЕКТРОНИКА.НОВОЕ РАЗВИТИЕ

5. СОВРЕМЕННОЕ ПОНИМАНИЕ РАДИОТЕХНИКИ И ЭЛЕКТРОНИКИ

ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА

ВВЕДЕНИЕ

Электроника представляет собой бурно развивающуюся отрасль науки и техники. Она изучает физические основы и практическое применение различных электронных приборов. К физической электронике относят: электронные и ионные процессы в газах и проводниках. На поверхности раздела между вакуумом и газом, твердыми и жидкими телами. К технической электронике относят изучение устройства электронных приборов и их применение. Область посвященная применению электронных приборов в промышленности называется Промышленной Электроникой.

Успехи электроники в значительной степени стимулированы развитием радиотехники. Электроника и радиотехника настолько тесно связаны, что в 50-е годы их объединяют и эту область техники называют Радиоэлектроника. Радиоэлектроника сегодня это комплекс областей науки и техники, связанных с проблемой передачи, приема и преобразования информации при помощи эл./магнитных колебаний и волн в радио и оптическом диапазоне частот. Электронные приборы служат основными элементами радиотехнических устройств и определяют важнейшие показатели радиоаппаратуры. С другой стороны многие проблемы в радиотехнике привели к изобретению новых и совершенствованию действующих электронных приборов. Эти приборы применяются в радиосвязи, телевидении, при записи и воспроизведении звука, в радиолокации, в радионавигации, в радиотелеуправлении, радиоизмерении и других областях радиотехники.

Современный этап развития техники характеризуется всевозрастающим проникновением электроники во все сферы жизни и деятельности людей. По данным американской статистики до 80% от объема всей промышленности занимает электроника. Достижения в области электроники способствуют успешному решению сложнейших научно-технических проблем. Повышению эффективности научных исследований, созданию новых видов машин и оборудования. Разработке эффективных технологий и систем управления: получению материала с уникальными свойствами, совершенствованию процессов сбора и обработки информации. Охватывая широкий круг научно-технических и производственных проблем, электроника опирается на достижения в различных областях знаний. При этом с одной стороны электроника ставит задачи перед другими науками и производством, стимулируя их дальнейшее развитие, и с другой стороны вооружает их качественно новыми техническими средствами и методами исследования.

1. ИСТОРИЯ И РАЗВИТИЕ РАДИОТЕХНИКИ

Предметом электронной техники является теория и практика применения электронных, ионных и полупроводниковых приборов в устройствах, системах и установках для различных областей народного хозяйства. Гибкость электронной аппаратуры, высокие быстродействия, точность и чувствительность открывают новые возможности во многих отраслях науки и техники.

Радио (от латинского “radiare” - излучать, испускать лучи) -

1).Способ беспроволочной передачи сообщений на расстояние посредством электромагнитных волн (радиоволн), изобретённый русским учёным А.С. Поповым в 1895 г. ;

2).Область науки и техники, связанная с изучением физических явлений, лежащих в основе этого способа, и с его использованием в связи, вещании, телевидении, локации и т.д.

Радио, как уже было сказано выше, открыл великий русский учёный Александр Степанович Попов. Датой изобретения радио принято считать 7 мая 1895 г., когда А.С. Попов выступил с публичным докладом и демонстрацией работы своего радиоприёмника на заседании Физического отделения Русского физико-химического общества в Петербурге.

Развитие электроники после изобретения радио можно разделить на три этапа:

· радиотелеграфный,

· радиотехнический

· электроники.

В первый период (около 30 лет) развивалась радиотелеграфия и разрабатывались научные основы радиотехники. С целью упрощения устройства радиоприёмника и повышения его чувствительности в разных странах велись интенсивные разработки и исследования различных типов простых и надёжных обнаружителей высокочастотных колебаний - детекторов.

В 1904 г. была построена первая двухэлектродная лампа (диод), которая до сих пор используется в качестве детектора высокочастотных колебаний и выпрямителя токов технической частоты, а в 1906 г. появился карборундовый детектор.

Трёхэлектродная лампа (триод) была предложена в 1907 г. В 1913 г. была разработана схема лампового регенеративного приёмника и с помощью триода были получены незатухающие электрические колебания. Новые электронные генераторы позволили заменить искровые и дуговые радиостанции ламповыми, что практически решило проблему радиотелефонии. Внедрению электронных ламп в радиотехнику способствовала первая мировая война. С 1913 г. по 1920 г. радиотехника становится ламповой.

Первые радиолампы в России были изготовлены Н.Д. Папалекси в 1914 г. в Петербурге. Из-за отсутствия совершенной откачки они были не вакуумными, а газонаполненными (с ртутью). Первые вакуумные приёмно - усилительные лампы были изготовлены в 1916 г. М.А. Бонч-Бруевичем. Бонч-Бруевич в 1918 г. возглавил разработку отечественных усилителей и генераторных радиоламп в Нижегородской радиолаборатории. Тогда был создан в стране первый научно - радиотехнический институт с широкой программой действий, привлёкший к работам в области радио многих талантливых учёных, молодых энтузиастов радиотехники. Нижегородская лаборатория стала подлинной кузницей кадров радиоспециалистов, в ней зародились многие направления радиотехники, в дальнейшем ставшие самостоятельными разделами радиоэлектроники.

В марте 1919 г. начался серийный выпуск электронной лампы РП-1. В 1920 г. Бонч-Бруевич закончил разработку первых в мире генераторных ламп с медным анодом и водяным охлаждением мощностью до 1 кВт, а в 1923 г. - мощностью до 25 кВт. В Нижегородской радиолаборатории О.В. Лосевым в 1922 г. была открыта возможность генерировать и усиливать радиосигналы с помощью полупроводниковых приборов. Им был создан безламповый приёмник - кристадин. Однако в те годы не были разработаны способы получения полупроводниковых материалов, и его изобретение не получило распространения.

Во второй период (около 20 лет) продолжало развиваться радиотелеграфирование. Одновременно широкое развитие и применение получили радиотелефонирование и радиовещание, были созданы радионавигация и радиолокация. Переход от радиотелефонирования к другим областям применения электромагнитных волн стал возможен благодаря достижениям электровакуумной техники, которая освоила выпуск различных электронных и ионных приборов.

Переход от длинных волн к коротким и средним, а также изобретение схемы супергетеродина потребовали применения ламп более совершенных, чем триод.

В 1924 г. была разработана экранированная лампа с двумя сетками (тетрод), а в 1930 - 1931 г.г. - пентод (лампа с тремя сетками). Электронные лампы стали изготовлять с катодами косвенного подогрева. Развитие специальных методов радиоприёма потребовало создания новых типов многосеточных ламп (смесительных и частотно - преобразовательных в 1934 - 1935 г.г.). Стремление уменьшить число ламп в схеме и повысить экономичность аппаратуры привело к разработке комбинированных ламп.

Освоение и использование ультракоротких волн привело к усовершенствованию известных электронных ламп (появились лампы типа “желудь”, металлокерамические триоды и маячковые лампы), а также разработке электровакуумных приборов с новым принципом управления электронным потоком - многорезонаторных магнетронов, клистронов, ламп бегущей волны. Эти достижения электровакуумной техники обусловили развитие радиолокации, радионавигации, импульсной многоканальной радиосвязи, телевидения и др.

Одновременно шло развитие ионных приборов, в которых используется электронный разряд в газе. Был значительно усовершенствован изобретённый ещё в 1908 г. ртутный вентиль. Появились газотрон (1928-1929 г.г.), тиратрон (1931 г.), стабилитрон, неоновые лампы и т.д.

Развитие способов передачи изображений и измерительной техники сопровождалось разработкой и усовершенствованием различных фотоэлектрических приборов (фотоэлементы, фотоэлектронные умножители, передающие телевизионные трубки) и электронографических приборов для осциллографов, радиолокации и телевидения.

В эти годы радиотехника превратилась в самостоятельную инженерную науку. Интенсивно развивались электровакуумная промышленность и радиопромышленность. Были разработаны инженерные методы расчёта радиотехнических схем, проведены широчайшие научные исследования, теоретические и экспериментальные работы.

И последний период (60-е-70-е годы) составляет эпоху полупроводниковой техники и собственно электроники. Электроника внедряется во все отрасли науки, техники и народного хозяйства. Являясь комплексом наук, электроника тесно связана с радиофизикой, радиолокацией, радионавигацией, радиоастрономией, радиометеорологией, радиоспектроскопией, электронной вычислительной и управляющей техникой, радиоуправлением на расстоянии, телеизмерениями, квантовой радиоэлектроникой и т.д.

В этот период продолжалось дальнейшее усовершенствование электровакуумных приборов. Большое внимание уделяется повышению их прочности, надёжности, долговечности. Разрабатывались бесцокольные (пальчиковые) и сверхминиатюрные лампы, что даёт возможность снизить габариты установок, насчитывающих большое количество радиоламп.

Продолжались интенсивные работы в области физики твёрдого тела и теории полупроводников, разрабатывались способы получения монокристаллов полупроводников, методы их очистки и введения примесей. Большой вклад в развитие физики полупроводников внесла советская школа академика А.Ф.Иоффе.

Полупроводниковые приборы быстро и широко распространились за 50-е-70-е годы во все области народного хозяйства. В 1926 г. был предложен полупроводниковый выпрямитель переменного тока из закиси меди. Позднее появились выпрямители из селена и сернистой меди. Бурное развитие радиотехники (особенно радиолокации) в период второй мировой войны дало новый толчок к исследованиям в области полупроводников. Были разработаны точечные выпрямители переменных токов СВЧ на основе кремния и германия, а позднее появились плоскостные германивые диоды. В 1948 г. американские учёные Бардин и Браттейн создали германиевый точечный триод (транзистор), пригодный для усиления и генерирования электрических колебаний. Позднее был разработан кремниевый точечный триод. В начале 70-х годов точечные транзисторы практически не применялись, а основным типом транзистора являлся плоскостной, впервые изготовленный в 1951 г. К концу 1952 г. были предложены плоскостной высокочастотный тетрод, полевой транзистор и другие типы полупроводниковых приборов. В 1953 г. был разработан дрейфовый транзистор. В эти годы широко разрабатывались и исследовались новые технологические процессы обработки полупроводниковых материалов, способы изготовления p-n- переходов и самих полупроводниковых приборов. В начале 70-х годов, кроме плоскостных и дрейфовых германиевых и кремниевых транзисторов, находили широкое распространение и другие приборы, использующие свойства полупроводниковых материалов: туннельные диоды, управляемые и неуправляемые четырёхслойные переключающие приборы, фотодиоды и фототранзисторы, варикапы, терморезисторы и т.д.

Развитие и совершенствование полупроводниковых приборов характеризуется повышением рабочих частот и увеличением допустимой мощности. Первые транзисторы обладали ограниченными возможностями (предельные рабочие частоты порядка сотни килогерц и мощности рассеяния порядка 100 - 200 мвт) и могли выполнять лишь некоторые функции электронных ламп. Для того же диапазона частот были созданы транзисторы с мощностью в десятки ватт. Позднее были созданы транзисторы, способные работать на частотах до 5 МГц и рассеивать мощность порядка 5 вт, а уже в 1972 г. были созданы образцы транзисторов на рабочие частоты 20 - 70 МГц с мощностями рассеивания, достигающими 100 вт и более. Маломощные же транзисторы (до 0,5 - 0,7 вт) могут работать на частотах свыше 500 МГц. Позже появились транзисторы, работающие на частотах порядка 1000 МГц. Одновременно велись работы по расширению диапазона рабочих температур. Транзисторы, изготовленные на основе германия, имели первоначально рабочие температуры не выше +55 ё 70 °С, а на основе кремния - не выше +100 ё 120 °С. Созданные позже образцы транзисторов на арсениеде галлия оказались работоспособными при температурах до +250 °С, и их рабочие частоты в итоге довелись до 1000 МГц. Есть транзисторы на карбиде, работающие при температурах до 350 °С. Транзисторы и полупроводниковые диоды по многим показателям в 70-е годы превосходили электронные лампы и в итоге полностью вытеснили их из областей электроники.

Перед проектировщиками сложных электронных систем, насчитывающих десятки тысяч активных и пассивных компонентов, стоят задачи уменьшения габаритов, веса, потребляемой мощности и стоимости электронных устройств, улучшения их рабочих характеристик и, что самое главное, достижения высокой надёжности работы. Эти задачи успешно решает микроэлектроника - направление электроники, охватывающее широкий комплекс проблем и методов, связанных с проектированием и изготовлением электронной аппаратуры в микроминиатюрном исполнении за счёт полного или частичного исключения дискретных компонентов.

Основной тенденцией микроминиатюризации является “интеграция” электронных схем, т.е. стремление к одновременному изготовлению большого количества элементов и узлов электронных схем, неразрывно связанных между собой. Поэтому из различных областей микроэлектроники наиболее эффективной оказалась интегральная микроэлектроника, которая является одним из главных направлений современной электронной техники. Сейчас широко используются сверх большие интегральные схемы, на них построено всё современное электронное оборудование, в частности ЭВМ и т.д.

2. ИСТОРИЯ РАЗВИТИЯ ЭЛЕКТРОНИКИ

Электроника представляет собой бурноразвивающуюся отрасль науки и техники. Она изучает физические основы и практическое применение различных электронных приборов. К физической электронике относят: электронные и ионные процессы в газах и проводниках. На поверхности раздела между вакуумом и газом, твердыми и жидкими телами. К технической электронике относят изучение устройства электронных приборов и их применение. Область посвященная применению электронных приборов в промышленности называется Промышленной Электроникой.

Успехи электроники в значительной степени стимулированы развитием радиотехники. Электроника и радиотехника настолько тесно связаны, что в 50-е годы их объединяют и эту область техники называют Радиоэлектроника. Радиоэлектроника сегодня это комплекс областей науки и техники, связанных с проблемой передачи, приема и преобразования информации при помощи эл./магнитных колебаний и волн в радио и оптическом диапазоне частот. Электронные приборы служат основными элементами радиотехнических устройств и определяют важнейшие показатели радиоаппаратуры. С другой стороны многие проблемы в радиотехнике привели к изобретению новых и совершенствованию действующих электронных приборов. Эти приборы применяются в радиосвязи, телевидении, при записи и воспроизведении звука, в радиолакации, в радионавигации, в радиотелеуправлении, радиоизмерении и других областях радиотехники.

Современный этап развития техники характеризуется все возрастающим проникновении электроники во все сферы жизни и деятельности людей. По данным американской статистики до 80% от объема всей промышленности занимает электроника. Достижения в области электроники способствуют успешному решению сложнейших научно-технических проблем. Повышению эффективности научных исследований, созданию новых видов машин и оборудования. Разработке эффективных технологий и систем управления: получению материала с уникальными свойствами, совершенствованию процессов сбора и обработки информации. Охватывая широкий круг научно-технических и производственных проблем, электроника опирается на достижения в различных областях знаний. При этом с одной стороны электроника ставит задачи перед другими науками и производством, стимулируя их дальнейшее развитие, и с другой стороны вооружает их качественно новыми техническими средствами и методами исследования. Предметами научных исследований в электронике являются:

1.Изучение законов взаимодействия электронов и других заряженных частиц с эл./магнитными полями.

Разработка методов создания электронных приборов в которых это взаимодействие используется для преобразования энергии с целью передачи, обработки и хранения информации, автоматизации производственных процессов, создания энергетических устройств, создания контрольно-измерительной аппаратуры, средств научного эксперимента и других целей.

Исключительно малая инерционность электрона позволяет эффективно использовать взаимодействие электронов, как с макрополями внутри прибора, так и микрополями внутри атома, молекулы и кристаллической решетки, для генерирования преобразования и приема эл./магнитных колебаний с частотой до 1000ГГц. А также инфракрасного, видимого, рентгеновского и гамма излучения. Последовательное практическое освоение спектра эл./магнитных колебаний является характерной чертой развития электроники.

2. Фундамент развития электроники

Фундамент электроники был заложен трудами физиков в XVIII- XIX в. Первые в мире исследования электрических разрядов в воздухе осуществили академики Ломоносов и Рихман в России и независимо от них американский ученый Франкель. В 1743 г. Ломоносов в оде "Вечерние размышления о божьем величие" изложил идею об электрической природе молнии и северного сияния. Уже в 1752 году Франкель и Ломоносов показали на опыте с помощью "громовой машины", что гром и молния представляют собой мощные электрические разряды в воздухе. Ломоносов установил также, что электрические разряды имеются в воздухе и при отсутствии грозы, т.к. и в этом случае из "громовой машины" можно было извлекать искры. "Громовая машина" представляла собой Лейденскую банку установленную в жилом помещении. Одна из обкладок которой была соединена проводом с металлической гребенкой или острием укрепленным на шесте во дворе.

В 1753 г. во время опытов был убит молнией, попавшей в шест, профессор Рихман, проводивший исследования. Ломоносов создал и общую теорию грозовых явлений, представляющую собой прообраз современной теории гроз. Ломоносов исследовал также свечение разряженного воздуха под действием машины с трением.

В 1802 году профессор физики Петербургской медико-хирургической академии - Василий Владимирович Петров впервые, за несколько лет до английского физика Дэви, обнаружил и описал явление электрической дуги в воздухе между двумя угольными электродами. Кроме этого фундаментального открытия, Петрову принадлежит описание разнообразных видов свечения разряженного воздуха при прохождении через него электрического тока. Свое открытие Петров описывает так: "Если на стеклянную плитку или скамеечку со стеклянными ножками будут положены 2 или 3 древесных угля, и если металлическими изолированными направителями, сообщенными с обоими полюсами огромной батареи, приближать оные один к другому на расстоянии от одной до трех линий, то является между ними весьма яркий белого цвета свет или пламя, от которого оные угли скорее или медлительнее разгораются, и от которого темный покой освещен быть может. " Работы Петрова были истолкованы только на русском языке, зарубежным ученым они были не доступны. В России значимость работ не было понято и они были забыты. Поэтому открытие дугового разряда было приписано английскому физику Дэви.

Начавшееся изучение спектров поглощения и излучения различных тел привело немецкого ученого Плюккера к созданию Гейслеровых трубок. В 1857 году Плюккер установил, что спектр Гейслеровой трубки, вытянутой в капилляр и помещенной перед щелью спектроскопа, однозначно характеризует природу заключенного в ней газа и открыл первые три линии так называемой Бальмеровской спектральной серии водорода. Ученик Плюккера Гитторф изучал тлеющий разряд и в 1869 году опубликовал серию исследований эл./проводимости газов. Ему совместно с Плюккером принадлежат первые исследования катодных лучей, которые продолжил англичанин Крукс.

Существенный сдвиг в понимании явления газового разряда был вызван работами английского ученого Томсона, открывшего существование электронов и ионов. Томсон создал Кавендишскую лабораторию откуда вышел ряд физиков исследователей электрических зарядов газов(Таундсен, Астон, Резерфорд, Крукс, Ричардсон). В дальнейшем эта школа внесла крупный вклад в развитие электроники. Из русских физиков над исследованием дуги и практическим ее применением для освещения работали: Яблочков (1847-1894), Чиколев (1845-1898), Славянов(сварка, переплавка металлов дугой), Бернардос(применение дуги для освещения). Несколько позднее исследованием дуги занимались Лачинов и Миткевич. В 1905 году Миткевич установил природу процессов на катоде дугового разряда. Не самостоятельным разрядом воздуха занимался Столетов (1881-1891). Во время его классического исследования фотоэффекта в Московском университете Столетов для эксперимента построил "воздушный элемент" (В.Э.) с двумя электродами в воздухе, дающим электрический ток без включения в цепь посторонних ЭДС только при внешнем освещении катода. Столетов назвал этот эффект актиноэлектрическим. Он изучал этот эффект как при повышенном атмосферном давлении, так и при пониженном. Специально построенная Столетовым аппаратура давала возможность создавать пониженное давление до 0,002 мм. рт. столба. В этих условиях актиноэлектрический эффект представлял собой не только фототок, но и фототок усиленный самостоятельным газовым разрядом. Свою статью об открытии этого эффекта Столетов закончил так: "Как бы ни пришлось окончательно сформулировать объяснение актиноэлектрических разрядов, нельзя не признать некоторые своеобразные аналогии между этими явлениями и давно знакомыми, но до сих пор малопонятными, разрядами Гейслеровых и Круксовых трубок. Желая при моих первых опытах ориентироваться среди явлений представляемых моим сетчатым конденсатором я невольно говорил себе, что перед мной Гейслеровая трубка, могущая действовать и без разряжения воздуха с посторонним светом. Там и здесь явления электрические тесно связанны со световыми явлениями. Там и здесь катод играет особую роль и по-видимому распыляется. Изучение актиноэлектрических разрядов обещает пролить свет на процессы распространения электричества в газах вообще…" Эти слова Столетова всецело оправдались.

В 1905 году Эйнштейн дал толкование фотоэффекту, связанного со световыми квантами и установил закон названный его именем. Таким образом фотоэффект, открытый Столетовым, характеризует следующие законы:

Закон Столетова - количество имитируемых в единицу времени электронов пропорционально, при прочих равных условиях, интенсивности падающего на поверхность катода света. Равные условия здесь надо понимать как освещение поверхности катода монохраматическим светом одной и той же длины волны. Или светом одного и того же спектрального состава. электроника радио лампа измерительный

Максимальная скорость электронов покидающих поверхность катода при внешнем фотоэффекте определяется соотношением:

Величина кванта энергии монохроматического излучения падающего на поверхность катода.

Работа выхода электрона из металла.

Скорость фотоэлектронов покидающих поверхность катодов не зависит от интенсивности падающего на катод излучения.

Впервые обнаружил внешний фотоэффект немецкий физик Герц(1887г.). Экспериментируя с открытым им электромагнитным полем. Герц заметил, что в искровом промежутке приемного контура искра, обнаруживающая наличие электрических колебаний в контуре проскакивает при прочих равных условиях легче в том случае если на искровой промежуток падает свет от искрового разряда в генераторном контуре

В 1881 году Эдисон впервые обнаружил явление термоэлектронной эмиссии. Проводя различные эксперименты с угольными лампами накаливания, он построил лампу содержащую в вакууме, кроме угольной нити, еще металлическую пластинку А от которой был выведен проводник Р. Если соединить провод через гальванометр с положительным концом нити, то через гальванометр идет ток, если соединить с отрицательным, то ток не обнаруживается. Это явление было названо эффектом Эдисона. Явление испускания электронов раскаленными металлами и другими телами в вакууме или в газе было названо термоэлектронной эмиссией.

3. ЭТАПЫ РАЗВИТИЯ ЭЛЕКТРОНИКИ

1 этап. К первому этапу относится изобретение в 1809 году русским инженером Ладыгиным лампы накаливания.

Открытие в 1874 году немецким ученым Брауном выпрямительного эффекта в контакте металл-полупроводник. Использование этого эффекта русским изобретателем Поповым для детектирования радиосигнала позволило создать ему первый радиоприемник. Датой изобретения радио принято считать 7 мая 1895 г. когда Попов выступил с докладом и демонстрацией на заседании физического отделения русского физико-химического общества в Петербурге. А 24 марта 1896 г. Попов передал первое радиосообщение на расстояние 350м. Успехи электроники в этот период ее развития способствовали развитию радиотелеграфии. Одновременно разрабатывали научные основы радиотехники с целью упрощения устройства радиоприемника и повышения его чувствительности. В разных странах велись разработки и исследования различных типов простых и надежных обнаружителей высокочастотных колебаний - детекторов.

2.Второй этап развития электроники начался с 1904 г. когда английский ученый Флеминг сконструировал электровакуумный диод. Основными частями диода (рис. 2) являются два электрода находящиеся в вакууме. Металлический анод (А) и металлический катод (К) нагреваемый электрическим током до температуры при которой возникает термоэлектронная эмиссия.

При высоком вакууме разряжение газа между электродами таково, что длина свободного пробега электронов значительно превосходит расстояние между электродами, поэтому при положительном, относительно катода напряжении на аноде Va электроны движутся к аноду, вызывая ток Ia в анодной цепи. При отрицательном напряжении анода Va эмитируемые электроны возвращаются на катод и ток в анодной цепи равен нулю. Таким образом электровакуумный диод обладает односторонней проводимостью, что используется при выпрямлении переменного тока. В 1907 г. американский инженер Ли де Форест установил, что поместив между катодом (К) и анодом (А) металлическую сетку (с) и подавая на нее напряжение Vc можно управлять анодным током Ia практически без инерционно и с малой затратой энергии. Так появилась первая электронная усилительная лампа - триод(рис. 3). Ее свойства как прибора для усиления и генерирования высокочастотных колебаний обусловили быстрое развитие радиосвязи. Если плотность газа наполняющего баллон настолько высока, что длина свободного пробега электронов оказывается меньше расстояния между электродами, то электронный поток, проходя через межэлектродное расстояние взаимодействует с газовой средой в результате чего свойства среды резко изменяются. Газовая среда ионизируется и переходит в состояние плазмы, характеризующееся высокой электропроводностью. Это свойство плазмы было использовано американским ученым Хеллом в разработанном им в 1905 г. газотроне - мощном выпрямительном диоде наполненном газом. Изобретение газотрона положило начало развитию газоразрядных электровакуумных приборов. В разных странах стало быстро развиваться производство электронных ламп. Особенно сильно это развитие стимулировалось военным значением радиосвязи. Поэтому 1913 - 1919 годы - период резкого развития электронной техники. В 1913 г. немецкий инженер Мейснер разработал схему лампового регенеративного приемника и с помощью триода получил незатухающие гармонические колебания. Новые электронные генераторы позволили заменить искровые и дуговые радиостанции на ламповые, что практически решило проблему радиотелефонии. С этого времени радиотехника становится ламповой. В России первые радиолампы были изготовлены в 1914 году в Санкт-Петербурге консультантом русского общества беспроволочного телеграфирования Николаем Дмитриевичем Папалекси, будущим академиком АН СССР. Папалекси окончил Страсбургский университет, где работал под руководством Брауна. Первые радиолампы Папалекси из-за отсутствия совершенной откачки были не вакуумными, а газонаполненными(ртутными). С 1914 - 1916 гг. Папалекси проводил опыты по радиотелеграфии. Работал в области радиосвязи с подводными лодками. Руководил разработкой первых образцов отечественных радиоламп. С 1923 - 1935 гг. совместно с Мандельштамом руководил научным отделом центральной радиолаборатории в Ленинграде. С 1935 года работал председателем научного совета по радиофизике и радиотехнике при академии наук СССР.

Первые в России электровакуумные приемо-усилительные радиолампы были изготовлены Бонч - Бруевичем. Он родился в г. Орле (1888 г.). В 1909 году окончил инженерное училище в Петербурге. В 1914 г. окончил офицерскую электротехническую школу. С 1916 по 1918 г. занимался созданием электронных ламп и организовал их производство. В 1918 году возглавил Нижегородскую радиолабораторию, объединив лучших радиоспециалистов того времени(Остряков, Пистолькорс, Шорин, Лосев). В марте 1919 года в нижегородской радиолаборатории началось серийное производство электровакуумной лампы РП-1. В 1920 году Бонч-Бруевич закончил разработку первых в мире генераторных ламп с медным анодом и водяным охлаждением, мощностью до 1 кВт. Видные немецкие ученые, ознакомившись с достижениями Нижегородской лаборатории признали приоритет России в создании мощных генераторных ламп. Большие работы по созданию электровакуумных приборов развернулись в Петрограде. Здесь работали Чернышев, Богословский, Векшинский, Оболенский, Шапошников, Зусмановский, Александров. Важное значение для развития электровакуумной техники имело изобретение нагреваемого катода. В 1922 году в Петрограде был создан электровакуумный завод, который слился с электроламповым заводом "Светлана". В научно-исследовательской лаборатории этого завода, Векшинским были проведены многосторонние исследования в области физики и технологии электронных приборов (по эмиссионным свойствам катодов, газовыделению металла и стекла и другие).

Переход от длинных волн к коротким и средним, и изобретение супергетеродина и развитие радиовещания потребовали разработки более совершенных ламп, чем триоды. Разработанная в 1924 г. и усовершенствованная в 1926 г. американцем Хеллом экранированная лампа с двумя сетками (тетрод), и предложенная им же 1930 г. электровакуумная лампа с тремя сетками (пентод), решили задачу повышения рабочих частот радиовещания. Пентоды стали самыми распространенными радиолампами. Развитие специальных методов радиоприема вызвало в 1934-1935 годах появления новых типов многосеточных частотопреобразовательных радиоламп. Появились также разнообразные комбинированные радиолампы, применение которых позволило значительно уменьшить число радиоламп в приемнике. Особенно наглядно взаимосвязь между электровакуумной и радиотехникой проявилась в период, когда радиотехника перешла к освоению и использованию диапазона УКВ (ультракороткие волны - метровые, дециметровые, сантиметровые и миллиметровые диапазоны). Для этой цели, во-первых, были значительно усовершенствованы уже известные радиолампы. Во-вторых, были разработаны электровакуумные приборы с новыми принципами управления электронными потоками. Сюда относятся многорезонаторные магнетроны(1938г), клистроны(1942г), лампы обратной волны ЛОВ (1953г). Такие приборы могли генерировать и усиливать колебания очень высоких частот, включая миллиметровый диапазон волн. Эти достижения электровакуумной техники обусловили развитие таких отраслей как радионавигация, радиолакация, импульсная многоканальная связь.

Советский радиофизик Рожанский в 1932 г. предложил создать приборы с модуляцией электронного потока по скорости. По его идее Арсеньев и Хейль в 1939 г. построили первые приборы для усиления и генерации колебаний СВЧ (сверх высокие частоты). Большое значение для техники дециметровых волн имели работы Девяткова, Хохлова, Гуревича, которые в 1938 - 1941 годах сконструировали триоды с плоскими дисковыми электродами. По этому же принципу в Германии были изготовлены металлокерамические лампы, а в США маячковые лампы.

Созданные в 1943г. Компфнером лампы бегущей волны(ЛБВ) обеспечили дальнейшее развитие СВЧ систем радиорелейной связи. Для генерации мощных СВЧ колебаний в 1921 г. был предложен магнетрон, его автор Хелл. По магнетрону исследования проводили русские ученые - Слуцкий, Грехова, Штейнберг, Калинин, Зусмановский, Брауде, в японии - Яги, Окабе. Современные магнетроны берут свое начало в 1936 - 1937 годах, когда по идее Бонч-Бруевича его сотрудники, Алексеев и Моляров, разработали многорезонаторные магнетроны.

В 1934 году сотрудники центральной радиолаборатории, Коровин и Румянцев, провели первый эксперимент по применению радиолакации и определению летящего самолета. В 1935 г. теоретические основы радиолакации были разработаны в Ленинградском физико-техническом институте Кобзаревым. Одновременно с разработкой вакуумных электроприборов, на втором этапе развития электроники, создавались и совершенствовались газоразрядные приборы.

В 1918 г. в результате исследовательской работы доктора Шретера немецкая фирма "Пинтш" выпустила первые промышленные лампы тлеющего разряда на 220 В. начиная с 1921 года голландская фирма Philips выпустила первые неоновые лампы тлеющего разряда на 110 В. В США первые миниатюрные неоновые лампы появились в 1929 г.

4. РАДИОТЕХНИКА И ЭЛЕКТРОНИКА.НОВОЕ РАЗВИТИЕ

В послевоенные годы начинается создание сети электронного телевидения и производство телевизионных приемников массового назначения, внедрение средств радиосвязи в различных звеньях народного хозяйства, транспорт, геологоразведку, строительство. Создаются средства многоканальной телеметрии для спутников Земли, радиослежения и связи с ними из различных районов суши и Мирового океана.

К этому периоду кончается эра радиоэлектронных ламп и наступает время полупроводниковой техники. Это вызывает необходимость перестройки в системе подготовки специалистов, в проектировании и производстве продукции радиопромышленности на новых принципах и элементной базе. К началу семидесятых годов относится появление интегральных схем, микропроцессорной техники, средств сверхдальней космической радиосвязи, гигантских радиотелескопов, способных улавливать радиосигналы из глубин космоса. Благодаря успехам ракетной техники и радиотелеметрии астрономы узнали о планетах Солнечной системы значительно больше, нежели за всю предыдущую многовековую историю этой науки.

Современная радиотехника - это одна из передовых областей науки и техники, занятая поисками новых применений электрическим колебательным процессам в самых различных областях, разработкой радиоаппаратуры, ее производством и практическим внедрением. Благодаря усилиям многих тысяч ученых и конструкторов как отечественных, так и зарубежных, базируясь на достижениях электроники и микроэлектроники, радиотехника в последний период переживает очередной качественный скачок буквально во всех своих направлениях.

Продолжая развивать традиционные сферы применения - радиовещание, телевидение, радиолокацию, радиопеленгацию, радиотелеметрию, радиорелейную связь,- специалистам удалось добиться существенного улучшения всех качественных показателей радиоаппаратуры, сделать ее более современной и удобной в эксплуатации. Расширилась и сфера использования средств радиотехники: в медицине - для лечения заболеваний токами сверхвысокой частоты, в биологии - для изучения поведения и миграции животных, рыб и птиц методами радиопеленгации, в машиностроении - для высокочастотной закалки деталей из металлов.

Современная радиотехника - это и огромная по своим масштабам радиотехническая промышленность, производящая миллионы черно-белых и цветных телевизоров, приемников самых разнообразных марок и категорий, не говоря уже о специальной аппаратуре для научных исследований, радиостанциях многоцелевого назначения - от мощных вещательных до мобильных переносных и портативных.

Предприятия радиотехнического профиля - это и производители значительной части компонентов радиоаппаратуры: контурных катушек, трансформаторов различного назначения, переключателей диапазонов, разнообразного крепежа и многого другого, что необходимо в современной аппаратуре. Поэтому для них характерен широкий набор рабочих профессий, многие из которых требуют подготовки в системе профессионально-технического образования. Например, штамповщики металлоизделий и пластических масс. Эти профессии крайне необходимы для изготовления корпусов приборов, деталей конструкций, деталей сложной конфигурации. По сути дела, это операторы специальных прессов, управляющих рабочими органами, регулирующими темп работы, скорость подачи материала и заготовок.

Необходимость повышения быстродействия ЭВМ заставляет специалистов искать все новые и новые средства усовершенствования технологии производства микросхем, оптимизации их архитектурной организации и физических принципов переработки цифровой и логической информации. Существенно меняются уже известные средства земной и космической электроники, телевидения, телефонии, телеметрии.

Все шире в эти сферы электронной техники внедряются цифровые способы обработки сигналов, переход на сверхвысокие частоты, широкое использование спутниковых систем в качестве многопрограммных телевизионных ретрансляторов, систем сверхточной навигации, для оперативной помощи терпящим бедствие на море, службы прогноза погоды, в исследовании природных ресурсов.

Многие достижения в области микроэлектроники породили необходимость пересмотра устоявшихся стандартов в отношении всех компонентов, используемых в разнообразной аппаратуре,- резисторов и конденсаторов, полупроводниковых элементов и разъемов, деталей телемеханики и автоматики. Принципиально меняется и требование к точности электрических параметров и механических характеристик сопутствующих изделий. Например, массово-бытовая аппаратура - проигрыватели, магнитофоны, видеомагнитофоны - в настоящее время представляет собой весьма точные устройства, по сути дела, сплав сложной электроники и качественной механики.

Если же говорить о специальном оборудовании, станках, прецизионной аппаратуре, современных роботах, используемых в производстве микросхем, то требования к их точности еще выше. Поэтому многие виды современной электронной продукции производятся с использованием микроскопов и системы видеоконтроля, обеспечивающего качественное изображение изготавливаемых деталей на большом телевизионном экране.

Полупроводниковая техника, да и многие другие компоненты в электронике выпускаются на базе специальных сверхчистых материалов: кремния, сапфира, арсенида галия, редкоземельных элементов, драгоценных металлов и их сплавов. Самые ответственные технологические операции производства полупроводниковых интегральных схем проходят в помещениях со стерильной чистотой, постоянной температурой и избыточным давлением воздуха, чтобы исключить любой внешний источник загрязнения. На таких производствах все работники одеты в специальные костюмы и соответствующую обувь. Им совершенно необходимо хорошее зрение и противопоказан тремор (дрожание) рук.

Миниатюризация и автоматизация электронной промышленности позволяют использовать уже на данном этапе элементы безлюдной технологии, когда отдельные виды изделий электроники изготавливаются без непосредственного участия человека: на вход технологической линии или участка поступает исходное сырье, а на выходе получается готовое изделие. Но большинство видов продукции все еще производится с участием человека, поэтому перечень рабочих профессий достаточно велик. Усложнение производства продукции, как правило, сопряжено с увеличением обязательных технологических операций и их специфичностью. Отсюда вытекает необходимость профессиональной специализации работников в овладении ими сложным промышленным оборудованием и знанием всего того, что положено в основу данной технологической операции, а также всех факторов, влияющих на качество производимой продукции.

Наиболее распространенными и необходимыми профессиями являются оператор вакуумно-напылительных процессов, оператор диффузионных процессов, юстировщик деталей и приборов, испытатель деталей и приборов и другие.

Продукция микроэлектроники с каждым годом все увеличивается, и эта тенденция едва ли в обозримом будущем изменится. Именно производство микросхем повышенной степени интеграции способно удовлетворить постоянно растущие потребности нашего народного хозяйства. В этом - перспектива развития электронной промышленности.

5. СОВРЕМЕННОЕ ПОНИМАНИЕ РАДИОТЕХНИКИ И ЭЛЕКТРОНИКИ

В современном мире нам дана возможность мгновенно найти нужного человека, проживающего на другом конце света, отыскать требуемую информацию, не вставая со стула окунуться в увлекательнейший мир прошлого или будущего. Вся рутинная и трудоемкая работа давно доверена роботам и машинам. Существование стало не таким простым и понятным как раньше, но однозначно более занимательным и познавательным.

Наша жизнь изобилует радиотехникой и электроникой, ее пересекают бесконечные провода и кабельные взаимосвязи, на нас действуют электрические сигналы и электромагнитные излучения. Таков результат стремительного развития электроники и радиотехники. Мобильная связь стерла все пространственные и временные границы, курьерская служба доставки интернет магазин лишили нас трудных и утомительных прогулок по магазинам и очередей. Все это настолько прочно вошло в нашу жизнь, что сложно представить, как без этого люди обходились веками. Развитие радиотехники и электроники послужило внедрению в жизнь микропроцессорных компьютеров, полнейшей автоматизации определенных видов производств, налаживанию связей с самыми труднодоступными точками, призванных осуществлять информационный обмен.

Каждый день в мире становится известно об электронных и радиотехнических новинках. Хотя, по большому счету настоящими инновациями они не становятся, поскольку изменяются только количественные характеристики, достигающиеся за счет размещения большего количества элементов на фиксированной единице площади, а сама идея может быть и годичной и более давности. Прогресс, несомненно, интересен многим людям, поэтому очень важно, что бы все заинтересованные могли объединяться, делиться наблюдениями и открытиями, создавать и воплощать в жизнь действительно новые и востребованные изобретения, направленные на улучшение уровня жизни людей во всем мире.

Пользуясь разнообразным оборудованием и аппаратурой в повседневной жизни, мы часто слышим о таких понятиях, как радиотехника и электроника. Для того, чтобы разобраться в устройстве или работе того или иного элемента, нам приходится прибегать к помощи интернета, различных специализированных журналов и книг.

Развитие радиотехнической науки началось тогда, когда появились первые радиостанции, которые работали на коротких радиоволнах. Со временем радиосвязь становилась лучше из-за перехода на более длинные радиоволны и благодаря совершенствованию передатчиков.

Работу теле- или радиосистем невозможно представить без радиотехнических устройств, которые применяются в промышленной и космических областях, в дистанционном управлении, радиолокации и радионавигации. Более того, радиотехнические устройства применяются даже в биологии и медицине. Планшеты, аудио и видеоплееры, ноутбуки и телефоны - вот неполный список тех радиотехнических устройств, с которыми мы сталкиваемся ежедневно. Важным элементом в экономике любой страны является управление инвестициями. Радиотехническая отрасль, как и электроника не стоят на месте, постоянно развиваются, совершенствуются старые модели, появляются совершенно новые аппараты.

Нужно отметить, что всевозможные приборы радиотехники и электроники облегчают нашу жизнь, делают ее гораздо более интересной и насыщенной. И не может не радовать тот факт, что сегодня немало молодых людей, желая хорошо разбираться в радиотехнике и электронике, поступают в различные высшие и средние учебные заведения на соответствующие факультеты. Это говорит о том, что в будущем эти отрасли науки и техники не будут стоять на месте, а будут продолжать совершенствоваться и наполнять нашу жизнь еще более интересными приборами и приспособлениями.

ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА

1. Словарь иностранных слов. 9-е изд. Издательство “Русский язык” 1979 г., испр. - М. : “Русский язык”, 1982 г. - 608 с.

2. Виноградов Ю.В. “Основы электронной и полупроводниковой техники”. Изд. 2-е, доп. М., “Энергия”, 1972 г. - 536 с.

3. Журнал “Радио”, номер 12, 1978 г.

4.Современные статьи журналов о радиотехники и электроники.

Размещено на Allbest.ru

...

Подобные документы

    Понятие, области, основные разделы и направления развития электроники. Общая характеристика квантовой, твердотельной и вакуумной электроники, направления их развития и применения в современном обществе. Достоинства и недостатки плазменной электроники.

    реферат , добавлен 08.02.2013

    Исследование зарождения и этапов развития твердотельной электроники. Научные открытия Майкла Фарадея, Фердинанда Брауна (создание беспроволочной телеграфии). Кристаллический детектор Пикарда - "кошачий ус". Разработка детектора-генератора О.В. Лосевым.

    реферат , добавлен 09.12.2010

    Радиосвязь как передача и прием информации с помощью радиоволн, распространяющихся в пространстве без проводов, ее разновидности и сферы практического применения на сегодня. Физические основы телевизионной передачи изображений. История изобретения радио.

    презентация , добавлен 23.04.2013

    Основные этапы проектирования приборов. Роль и место радиоэлектронной промышленности в национальной технологической системе России. Формирование рынка контрактной разработки. Технология производства полупроводниковых приборов и интегральных микросхем.

    курсовая работа , добавлен 22.11.2010

    Естественнонаучные открытия в области электротехники. Первые устройства беспроводной связи. Формирование научных основ радиотехники. Начало беспроводной связи. Внедрение радиостанций в массовое производство. История радио и "беспроводной телеграфии".

    реферат , добавлен 10.06.2015

    Измерительная техника на сетях современных телекоммуникаций. Состояние развития рынка измерительной техники. Системное и эксплуатационное измерительное оборудование. Типовые каналы и тракты первичной сети. Современные оптические системы передачи.

    дипломная работа , добавлен 01.06.2012

    Этапы развития информационной электроники. Усилители электрических сигналов. Развитие полупроводниковой информационной техники. Интегральные логические и аналоговые микросхемы. Электронные автоматы с памятью. Микропроцессоры и микроконтроллеры.

    реферат , добавлен 27.10.2011

    Предпосылки зарождения электротехники. Первые опыты с электричеством. Применение математического аппарата в описании открытых явлений. Создание электродвигателя и телеграфа. Публичная демонстрация радиоприемника русским ученым А.С. Поповым в мае 1895 г.

    реферат , добавлен 09.08.2015

    Этапы и тенденции развития микроэлектроники. Кремний и углерод как материалы технических и живых систем. Физическая природа свойств твёрдых тел. Ионные и электронные полупроводники. Перспективные материалы для электроники: серое олово, теллурид ртути.

    реферат , добавлен 23.06.2010

    История изобретения и развития фотоаппарата. Исследование основных функций, достоинств и недостатков встроенных, компактных и зеркальных цифровых камер. Обзор способов записи изображений на цифровой носитель. Характеристика процесса выбора режима съемки.

Понятие "радиоэлектроника" образовалось в результате объединения понятий "радиотехника" и "электроника".

Радиотехника - это область науки, использующая электромагнитные колебания радиочастотного диапазона для осуществления передачи информации на большие расстояния.

Электроника - это область науки и техники, использующая явления движения носителей электрического заряда, происходящие в вакууме, газах, жидкостях и твердых телах. Развитие электроники позволило создать элементную базу радиоэлектроники.

Следовательно, радиоэлектроника - собирательное название ряда областей науки и техники, связанных с передачей и преобразованием информации на основе использования радиочастотных электромагнитных колебаний и волн; основные из них - радиотехника и электроника. Методы и средства радиоэлектроники применяются в большинстве областей современной техники и науки .

Основные этапы развития радиоэлектроники

Днем рождения радио считается 7 мая 1895 г., когда А.С. Попов продемонстрировал «прибор для обнаружения и регистрации электрических колебаний». Независимо от Попова, но позже него Маркони в конце 1895 г. повторил опыты Попова по радиотелеграфии.

Изобретение радио явилось логическим следствием развития науки и техники. В 1831 г. М. Фарадей обнаружил явление электромагнитной индукции, в 1860-1865 гг. Дж. К. Максвелл создал теорию электромагнитного поля и предложил систему уравнений электродинамики, описывающих поведение электромагнитного поля. Немецкий физик Г. Герц в 1888 г. впервые экспериментально подтвердил существование электромагнитных волн, нашел способ их возбуждения и обнаружения. Открытие в 1873 г. У. Смитом внутреннего фотоэффекта и в 1887 г. Г. Герцем внешнего фотоэффекта послужило основой технических разработок фотоэлектрических приборов. Открытия этих ученых подготовлены множеством других.

Одновременно шло развитие электронной техники. В 1884 г. Т. Эдисоном открыта термоэлектронная эмиссия, и пока в 1901 г. Ричардсон изучал это явление, уже были созданы электронно-лучевые трубки. Первый электровакуумный прибор с термокатодом - диод - разработан Д.А. Флемингом в 1904г. в Великобритании и использован для выпрямления высокочастотных колебаний в радиоприемнике. В 1905 г. Хелл изобрел газотрон, 1906-1907 гг. ознаменовались созданием в США Д. Форестом трехэлектродного электровакумного прибора, получившего название «триод». Функциональные возможности триода оказались чрезвычайно широки. Он мог применяться в усилителях и генераторах электрических колебаний в широком диапазоне частот, преобразователях частоты и т.д. Первые отечественные триоды изготовили в 1914-1916 гг. независимо Н.Д. Папалекси и М.А.Бонч-Бруевич. В 1919 г. В. Шотки разработал четырехэлектродный вакуумный прибор - тетрод, широкое практическое применение которого началось в период 1924-1929 гг. Работы И. Ленгмюра привели к созданию пятиэлектродного прибора - пентода. Позже появились более сложные и комбинированные электронные приборы. Электроника и радиотехника объединились в радиоэлектронику.

К 1950-1955 гг. был создан и запущен в серийное производство ряд электровакуумных приборов, способных работать на частотах вплоть до миллиметрового диапазона волн. Успехи в разработке и производстве электровакуумных приборов позволили уже в сороковых годах двадцатого века создавать достаточно сложные радиотехнические системы.

Постоянное усложнение задач, решаемых радиоэлектронными системами, требовало увеличения числа используемых в аппаратуре электровакуумных приборов. Разработка полупроводниковых приборов началась несколько позже. В 1922 г. О.В. Лосевым была открыта возможность генерирования электрических колебаний в схеме с полупроводниковым диодом. Большой вклад в теорию полупроводников на начальном этапе внесли советские ученые А.Ф. Иоффе, Б.П. Давыдов, В.Е. Локшарев.

Интерес к полупроводниковым приборам резко возрос после того, как в 1948-1952 гг. в лаборатории фирмы «Белл-Телефон» под руководством У.Б. Шокли был создан транзистор. В небывало короткий срок было начато массовое производство транзисторов во всех промышленно развитых странах.

С конца 50-х - начала 60-х гг. радиоэлектроника становится в основном полупроводниковой. Переход от дискретных полупроводниковых приборов к интегральным схемам, содержащим до десятков-сотен тысяч транзисторов на одном квадратном сантиметре площади подложки и являющимися законченными функциональными узлами, еще больше расширил возможности радиоэлектроники в технической реализации сложнейших радиотехнических комплексов. Таким образом, совершенствование элементной базы привело к возможности создания аппаратуры, способной решать фактически любые задачи в области научных исследований, техники, технологии и т.д. .

Значение радиоэлектроники в жизни современного человека

Радиоэлектроника является важным инструментом техники коммуникаций и связи. Жизнь современного общества немыслима без обмена информацией, который осуществляется с помощью средств современной радиоэлектроники. Ее применяют в системах радиосвязи, радиовещании и телевидении, радиолокации и радионавигации, радиоуправлении и радиотелеметрии, в медицине и биологии, в промышленности и космических проектах. В современном мире без радиоэлектроники невообразимы телевизоры, радиоприемники, компьютеры, космические корабли и сверхзвуковые самолеты.

Следует отметить огромную роль радиотехнических средств в исследовании атмосферы, околоземного пространства, планет солнечной системы, ближнего и дальнего космоса. Последние достижения в освоении солнечной системы, планет и их спутников является наглядным подтверждением.