Расчет освещения производственного помещения калькулятор. Расчет искусственного освещения. Нормирование и расчет искусственного освещения

В древние времена свет воспринимался людьми как явление, которое зависело от воли высших существ… Сегодня ни для кого не секрет, как можно управлять этим излучением, в чем его суть, как провести расчет искусственного освещения.

Недостаток световых лучей приводит к значительному уменьшению работоспособности, ухудшению самочувствия и к снижению настроения. В связи с этим важным моментом является правильное, с соблюдением гигиенических требований, размещение и подключение осветительных приборов. Для предприятий выгодным будет приобретение энергосберегающего оборудования как для внутренних помещений, так и для территории.

Характеристики освещения

В диапазоне волны длиной в 380-780 нм электромагнитное излучение оптического спектра становится видимым. Его можно охарактеризовать по следующим величинам:

1. Световой поток (это часть оптического излучения, воспринимаемая человеком как свет). Единицей измерения является люмен. При расчетах обозначается как Ф.

2. Сила света (это плотность светового потока в пространстве, лежащая в направлении оси телесного угла). Обозначается как I,

а измеряется в канделах.

3. Телесный угол (это часть пространства, которая расположена внутри конической поверхности). Измеряется в стерадианах. Обозначается в расчетах W.

4. Освещенность показывает значение поверхностной плотности светового потока. Единицей ее является люкс, а обозначается Е.

5. Яркость представляет собой поверхностную плотность силы света поверхности, которая лежит в данном направлении. Этот поток измеряется в канделах на квадратный метр и обозначается L.

6. Показатель ослепленности (Р) является критерием слепящего действия световых приборов.

7. Критерий пульсации освещенности (Кп), измеряемый в процентах, служит для оценки относительной глубины колебаний освещенности.

8. Показатель дискомфорта (М) используется в качестве критерия оценки дискомфортной блескости, которая вызывает ощущение рези в глазах при неоднородном размещении ярких пятен в

Приборы измерения

Для определения освещенности используются различные люксметры. Например, прибор «Ю-116» позволяет рассчитать этот параметр, создаваемый лампой накаливания и естественным светом. Люксметр применяется для контроля над освещенностью в сельском хозяйстве, на транспорте, в промышленности и в других сферах.

Для измерения других величин, например, яркости, коэффициента пульсации, используются аналого-цифровые приборы. Примером их служит пульсометр-люксметр «АРГУС-07». Принцип его действия - в преобразовании светового потока, который создается протяженными объектами, в электрический непрерывный сигнал, пропорциональный освещенности. Далее он преобразуется в цифровой код, проявляемый на электронном табло.

в производстве

Если помещение озаряется только лампами, торшерами, светильниками, то есть искусственным светом, то такое освещение называется искусственным. Оно необходимо для создания комфортных условий труда, нормальной работы зданий и территорий. Его можно разделить на следующие типы:

  1. Рабочее.
  2. Охранное.
  3. Аварийное.
  4. Дежурное.

Первое используется для освещения офисов, мест выполнения работ вне здания. Второй и четвертый тип освещения включается в нерабочие часы, и третий выделяет эвакуационные выходы, различные безопасные моменты. может быть общим, при котором лампы размещены равномерно в верхней зоне офиса, или комбинированным. Во втором случае к общему прибавляется местное освещение, которое создается лампами, находящимися вблизи рабочего места.


Следующим видом производственного освещения является естественное. Здесь тоже можно выделить несколько типов: боковое, верхнее, комбинированное. Первый - это когда солнечный свет проникает в помещение через световые проемы в наружных стенах. При втором свет проходить через проемы в стенах в местах перепада высот здания или через фонари. Третий тип сочетает в себе верхнее и боковое освещение. Этот вид освещения особенно необходим в помещениях с постоянным присутствием большого количества людей.

Совмещенный вид освещения является комбинацией естественного и искусственного. Оно применяется в особых случаях, когда выполняются работы с первого по третий разряды, если необходимы объемно-планировочные решения для строительства или когда технико-экономическая целесообразность подтверждена расчетами.

Нормы видов освещения

При выборе значений параметров норм нужно опираться на СНиП «Естественное и искусственное освещение». При этом освещенность помещений регулируется ее минимальным разрешенным уровнем, исходя из характеристик и вида выполняемой зрительной работы (ЗР). Существуют три вида ЗР:

  1. Первый включает в себя деятельность, при которой не нужно применять оптические приборы. Объект различения в этом случае может находиться на разных расстояниях от глаз.
  2. Второй разрешает использование оптических приборов при выполнении работ. Причина кроется в очень маленьком размере рассматриваемого объекта, который не воспринимается глазом.
  3. Третий включает работы, при которых необходимо воспринимать информацию с экранов. К этому виду применяются особые требования к организации освещения.

При согласованности со СНиП «Естественное и искусственное освещение» можно выделить следующие характеристики зрительных работ без использования оптики: разряд, подразряд. Первая формируется в связи с размером объекта различения, а вторая - от сочетания контраста и светлоты объекта различения с фоном. Для каждой характеристики нормируются освещенность, показатель освещенности, коэффициент пульсации и свои методы расчета искусственного освещения.

Если освещение в помещении естественное или совмещенное, то для разряда ЗР приводится коэффициент естественной освещенности. Он представляет собой отношение естественного света к установленной величине наружной горизонтальной освещенности, которая создается светом открытого неба.

Когда естественное освещение является боковым и односторонним, то возникает минимальное значение КЕО в точке, которая находится на пересечении вертикальной плоскости сечения помещения и условной функциональной поверхности на расстоянии 1 м от стены, дальше всех расположенной от световых проемов. Если освещение верхнее или комбинированное, то при расчетах берется среднее значение коэффициента в точках, находящихся на пересечении вертикальной плоскости разреза помещения и рабочей поверхности.

Расчет искусственного освещения

Первым пунктом в этом вопросе будет отбор типа источника света. Также необходимо определиться с системой освещенности и соответствующей нормой. Вторым пунктом станет размещение в офисе выбранного светильника и расчет освещенности в определенных точках. И, наконец, последним пунктом будет определение единичной мощности ламп. Выбор источника света проводится по следующему правилу: экономичные газоразрядные лампы используются в помещениях с температурой воздуха выше десяти градусов, с высокими требованиями к качеству цветопередачи и минимальной степенью травматизма. Если в офисе естественный свет отсутствует и выполняются точные работы, то применяется люминесцентное освещение. Если необходимо использовать и провести расчет светодиодного освещения, то здесь следует помнить о том, что светильники такого типа не несут стробоскопический эффект, то есть свет идет постоянно. Поэтому важно провести верный расчет коэффициента пульсации, чтобы исключить высокую яркость.

Метод удельной мощности

Расчет искусственного освещения данным способом позволяет провести ориентировочный расчет освещения производственного помещения при равномерном распределении светильников. Мощность одной лампы рассчитывается по формуле:

Где Ру обозначает удельную мощность лампы, значение которой есть в справочниках. Удельная мощность зависит от типа и размещения ламп и светильников, характеристики освещаемого помещения, а также от высоты подвеса. Величина S показывает площадь пола, а пл - число ламп. Результаты обычно округляют в сторону большего значения.

Метод светового потока или коэффициента использования

Этим способом проводится расчет производственного освещения в случаях, когда освещенность рабочей поверхности задана. Метод не применяется для локализованного наружного и местного освещения, если рабочие поверхности не горизонтальные, а также при расчетах направленного сконцентрированного светового потока.

Расчеты проводятся по формуле:

F = En S Z K/ Nη

Где F - это световой поток; En - нормируемая освещенность; S - площадь пола; N - число ламп; Z - коэффициент минимальной мощности; K - коэффициент запаса; η - коэффициент использования световых лучей ламп.

По значению светового потока отбирается светильник, который может отличаться от расчетной величины в пределах от -10 до +20 процентов. Если же разница больше разрешенных границ, то регулируется число светильников.

Точечный метод

Способ применяется для определения световых лучей ламп в случаях, когда отраженный свет неважен. Метод используется при любом расположении освещаемой поверхности и светильников. Способ основан на соотношении зависимости освещенности поверхности (Е), которая создается точечным источником света, от расстояния до поверхности (r), угла падения луча (a) и силы света (I):

Е = I cos α/r 2

Расчет освещения цеха, и конкретно осветительной установки, включает в себя несколько этапов:

1. Нахождение минимальной нормированной освещенности.

2. Отбор типа источника света. Определение вида светильников и их размещение по цеху.

3. Выделение контрольных точек с наименьшей условной освещенностью на плане офиса.

4. В контрольных точках проводят расчеты по условной освещенности. Последующий расчет освещения производственного помещения опирается на точку с наименьшей условной освещенностью.

5. С помощью справочных таблиц определяют коэффициенты добавочной освещенности и запаса.

6. Находят световой поток ламп. По результатам подбирают стандартную лампу.

7. Определяют мощность лампы и всей световой установки.

Пример расчета освещения приведем следующий: в задаче даны высота h=4 м, коэффициент запаса k=1,5, коэффициент добавочной освещенности u=1,2, нормированная освещенность Emin=75 лк. Необходимо определить освещение с рабочими поверхностями у стен лампами УПД.

Так как в светильниках данного типа глубокое светораспределение, то для них λ=1. Расстояние между световыми установками будет 4 м, а от крайних светильников до стен - 1 м. Размещаем на плане контрольные точки А, Б (с наименьшей освещенностью) и подсчитываем расстояние от них до проекций ближайших светильников (d). Следующим пунктом будет определение условной освещенности и нахождение точки с наименьшей освещенностью. По данным подсчитываем значение светового потока лампы, ее разницу со стандартным значением, а также находим освещение.

Расчет общего освещения при работе с компьютерами


Когда деятельность сотрудника связана с ПЭВМ, должны соблюдаться особые правила при установке освещения. В этом случае глаз испытывает двойную нагрузку, так как воспринимает отраженный свет от клавиатуры и документов, а также прямой от монитора.

Помещение должно иметь искусственное и естественное освещение, с коэффициентом КЕО не ниже 1,2%. Необходимо, чтобы рабочая поверхность с компьютерами была ориентирована боковой стороной к световым проемам для проникновения естественного света. Расчет искусственного освещения помещения осуществляется относительно системы общего равномерного падения света. Прямая блесткость ограничивается от источников освещения (яркость окон, ламп и других светящихся поверхностей не больше 200 кд/м 2), а отраженная регулируется за счет правильного выбора светильников и позиций функциональных мест в зависимости от основы света (яркость бликов на экране не больше 40 кд/м 2).

При искусственном освещении в качестве источников света нужно использовать люминесцентные и компактные люминесцентные лампы. Если помещения несут производственный или общественный характер, то можно применять металлогалогенные лампы. Светильники должны быть с экранирующими решетками и рассеивателями.

Решения освещения улиц

Уличное освещение несет важную задачу объединения внешних участков в единое целое, играет роль помощника безопасности и ориентации в пространстве, а также вносит эстетическую нотку в убранство городов. Световое оборудование для такого типа освещения необходимо подбирать в зависимости от особенностей и статуса объектов. Они могут включаться автоматически или с помощью диспетчера. Можно выделить несколько видов уличного освещения:

  1. Заливающее. Суть метода - в установке и нацеливании прожекторов заливающего света. Его используют для иллюминации в охранных целях прилегающих территорий.
  2. Общее. Этот способ включает в себя равномерное распределение светильников одного типа. Оно идеально подходит для освещения дорожек, парков, зон, где перемещаются люди и автомобили.
  3. Маркировочное. При этом виде уличного освещения светильники располагаются вдоль выделенных линий и форм. Оно используется для создания визуальных контуров, подчеркивания рельефности, выделения направления автомобильных и пешеходных дорог.

    ПРОЕКТИРОВАНИЕ ЭЛЕКТРООСВЕЩЕНИЯ ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ

Для крупных и сложных промышленных комплексов, зданий и сооружений проект осветительной установки разрабатывают в две стадии: технический проект и рабочие чертежи.

В техническом проекте решаются вопросы светотехнической и электрической частей осветительной установки, выдаются задания на проектирование электроснабжения и основные строительные решения.

Рабочие чертежи разрабатываются на основании утвержденного технического проекта.

Разработку технорабочего проекта или рабочих чертежей следует производить в соответствии с условиями среды в помещениях, в полном соответствии с ПУЭ должны быть установлены группы и категории среды, данные об источниках питания осветительной установки. При проектировании рекомендуется подробно изучить технологический процесс освещаемого предприятия и знать характер зрительной работы, выполняемой в помещениях.

На планах питающей сети упрощенно показывается строительная часть зданий, изображаются щитки, у которых указываются номер и установленная мощность, наносятся линии сети с указанием марок и сечений кабелей и проводов. На планах основных помещений фрагментарно намечаются места установки светильников и щитков. Светильники, щитки и различное оборудование подсчитываются по планам и таблице показателей.

Чертежи планов и разрезов содержат основные сведения о светотехнических решениях и об электрической части осветительных установок.

При разработке планов необходимо использовать комплекс условных обозначений и требований по выполнению надписей и цифр, указанных в ГОСТ 21-614-88.

На планы наносят светильники, магистральные пункты, групповые щитки, понижающие трансформаторы, питающие и групповые сети, выключатели, штепсельные розетки, указывают обязательно названия помещений, нормируемую освещенность от общего освещения, класс пожаро- и взрывоопасных помещений, типы, высоту установки светильников и мощность ламп, способы проводки и сечения проводов и кабелей осветительных сетей(рис.2 а,б,в). Привязочные размеры мест установки светильников, щитков, отметки мест прокладки осветительных сетей указываются в случаях, когда необходимо точное фиксирование этих мест.

При проектировании зданий, ряд помещений которых имеет одинаковые светотехнические решения: светильники, осветительную сеть и другие одинаковые элементы - рекомендуется все решения наносить только для одного помещения, для других делают соответствующую ссылку на него. На общем плане этажа показывают только вводы в такие помещения. Чертежи поэтажных планов всех помещений выполняются в масштабе 1: 100 или 1: 200.

Кроме чертежей планов и разрезов освещаемых помещений с нанесенными на них схемами освещения в проектную документацию входят: заказные спецификации на электрооборудование и материалы; строительные здания; схемы дистанционного управления или другие принципиальные схемы, нетиповые установочные чертежи.

Питающие и групповые сети на планах помещений наносят более толстыми линиями, чем строительные элементы здания и оборудования, число проводов в групповых линиях обозначают числом засечек, наносимых под углом 45 к линии сети (рис.2)

Повсеместное указание групп необходимо для обеспечения равномерной нагрузки фаз. На щитках без заводской нумерации групп указываются фазы присоединения. К планам указывают итоговые данные, напряжения сети, ссылки на условные обозначения, сведения о заземлении.

Электрическое освещение подразделяется на рабочее, аварийное, эвакуационное (аварийное освещение для эвакуации), охранное. При необходимости часть светильников того или иного вида освещения может использоваться для дежурного освещения (освещение в нерабочее время). Искусственное освещение проектируется двух систем: общее и комбинированное, когда к общему освещению добавляется местное(освещение рабочих мест).

Рабочее освещение следует устраивать во всех помещениях зданий, а также для участков территорий, где производятся работы, движется транспорт.

Расчет осветительной установки состоит из двух частей: светотехнической и электрической.

Светотехническая часть содержит: выбор источников света, нормированной освещенности, вида и системы освещения, типа светильников, коэффициентов запаса и добавочной освещенности; расчет размещения светильников (определение высоты подвеса, расстояния от стен и между светильниками, числа светильников), светового потока и мощности лампы.

Электрическая часть проекта содержит: выбор мест расположения магистральных и групповых щитков, трассы сети и составления схемы питания и управления освещением, вида проводки и способа ее прокладки; расчет осветительной сети по допустимой потере напряжения с последующей проверкой сечения по длительному току и по механической прочности, защиты осветительной сети; рекомендации по монтажу осветительной установки; меры защиты от поражения электрическим током.

Задание № 2

Расчет искусственного освещения производственных помещений

Важным фактором обеспечения комфортных условий труда является создание оптимального освещения производственных помещений, рабочих мест, участков производства работ вне зданий и территории предприятия в целом. Для искусственного освещения производственных помещений используют преимущественно люминесцентные лампы, а при высоте 12…14 м – дуговые ртутные лампы. Лампы накаливания вследствие низкого кпд практически не находят применения на современных предприятиях.

Задачами светотехнического расчета могут быть:

– определение мощности ламп, необходимой для обеспечения заданной освещенности, при выбранных типе и расположении светильников;

– определение числа и расположения светильников известной мощности, необходимых для получения заданной освещенности;

– определение ожидаемой (расчетной) освещенности при известных типе, расположении и мощности светильников.

Наиболее распространенным методом расчета искусственного освещения является метод коэффициента использования светового потока :

где Ф – требуемый световой поток дуговой ртутной лампы (ДРЛ) или группы ламп люминесцентного светильника, лм

Е н – требуемая минимальная нормируемая освещенность в помещении, лк, подбирается по СНиПу 23-05-95 в зависимости от условий и характера зрительной работы (табл.8).

S – площадь освещаемой поверхности, т.е. площадь помещения, м 2 ;

К з – коэффициент запаса, учитывающий старение лампы и запыленность воздуха в помещении. Определяется по СНиПу 23-05-95 (табл.9);

z – коэффициент неравномерности освещения, представляющий собой отношение средней освещенности к минимальной, создаваемой лампой

. Для ДРЛ z = 1,15, для люминесцентных ламп z=1,1;

N – количество светильников, шт;

η – коэффициент использования светового потока светильника (в долях единицы), подбирается по справочным данным, исходя из типа светильника, индекса помещения (i ) и коэффициентов отражения потолка, стен и расчетной поверхности табл. 10, 11, 12).

Индекс помещения i определяют по формуле:


(25)

где А и В – длина и ширина помещения, м;

Н св – расстояние от светильника до расчетной поверхности, м


(26)

где Н – высота помещения, м;

h п – расстояние от потолка до светильника;

h р – расстояние от пола до расчетной поверхности.

После определения требуемого светового потока лампы подбирают по справочным данным ближайшую стандартную лампу (табл. 13, 14) и находят отклонение ее светового потока от расчетного:


, % (27)

Допускается отклонение в пределах от -10 % до +20 %.

Выполнение работы.

Спроектировать общее равномерное освещение помещения лаборатории физико-механических испытаний светильниками типа ОД с двумя люминесцентными лампами. Размеры помещения: длина A = 20 м, ширина B = 8 м, высота H = 3 м. Коэффициенты отражения потолка ρ п 70%, стен ρ с 50 %, расчетной поверхности ρ р 30 %. Содержание пыли в воздухе помещения < 1 мг/м 3 .

1. По СНиПу 23-05-95 (табл.8) определяем Е н в зависимости от характера зрительной работы:

Е н = 200 лк.

2. Вычисляем площадь освещаемой поверхности, т.е. помещения:

S=A*B=20*8=160м 2 .

3. Коэффициент запаса лампы в зависимости от содержания пыли в помещении найдем по табл. 9:

К з = 1,5 мг/м 3

4. Коэффициент неравномерности освещения для люминесцентных ламп z = 1,1.

5. Задаемся количеством светильников N и определяем схему их навески. Принимаем 14 светильников, расположенных в два ряда.

Расстояние от стены до светильника принимается равным

, где l – расстояние между светильниками, l = 2 м. Тогда

м.

6. Определяем индекс помещения по формуле (25):


Учитывая то, что h п составляет 0,2 м, а h р принимаем 0,8 м, определяем:

H св =3-0,2-0,8=2м

Тогда =(20*8)/2*(20+8)=2,86

7. Коэффициент использования светового потока светильника типа ОД с учетом заданных коэффициентов отражения потолка и стен определяем по табл.12. Принимается в долях единицы η = 0,55.

8. Тогда требуемый световой поток равен:

=(200*160*1,5*1,1)/(14*0,55)=6857лм

9. В светильнике – 2 лампы, поэтому требуемый световой поток одной лампы равен 6857:2=3428 лм. По ГОСТу 6825–74 (табл. 14) подбираем ближайшую стандартную люминесцентную лампу ЛБ 40 со световым потоком 3000 лм.

10. Найдем отклонение светового потока выбранной стандартной лампы от требуемого по расчету:


=(3428-3000)/3000*100=14,3,

что находится в пределах допустимого.

11. Таким образом, для освещения помещения лаборатории требуется 14 светильников типа ОД с двумя люминесцентными лампами. Схема расположения светильников представлена на рисунке.


Схема расположения светильников

  • 6.Виды ответственности за нарушение охраны труда
  • 7.Охрана труда женщин, молодежи. Льготы и компенсации по условиям труда
  • 9.Управление охраной труда на производстве. Функции суот.
  • 10.Обязанности работодателя по охране труда. Права и обязанности работника.
  • 11.Порядок и сроки расследования несчастных случаев на про-ве.
  • 12.Классификация несчастных случаев на производстве
  • 13.Оформления материалов расследования несчастных случаев на производстве
  • 14.Обязанности работодателя при несчастном случае на производстве
  • 15.Методы анализа производственного травматизма
  • 16.Обучение и инструктаж работающих по охране труда. Виды инструктажа
  • 17.Инструкция по охране труда.
  • 18.Ответственность работодателя за нанесения ущерба работнику. Размер вреда подлежащий возмещению(неполный)?????????
  • 19. 1)Профессиональные вредности; 2)Основные формы трудовой деятельности; 3)Физиология труда
  • 20.Санитарно-технические требования к производственным помещениям. Гигиеническая оценка условий труда???
  • 21.Производственная пыль: классификация, действие на организм человека, нормирование, меры защиты.
  • 22.Вредные вещества (промышленные яды):классификация, пути проникновения в организм человека, нормирование, меры защиты
  • 23.Виды освещения. Гигиенические требования к освещению производственных помещений. Основные светотехнические единицы.
  • 24.Естественное освещение: виды, нормирование, методы расчета, методы определения
  • 26.Методы расчета искусственного освещения
  • 31.Жалобы, заболевания, недомогания, вызываемой работой на эвм. Гигиенические нормативы к видиодисплейным терминалам от 1996 г. Их основные требования
  • 32.Метеорологический условия производственной среды, Параметры. Нормирование. Способы измерения и приборы.
  • 33.Регулирование чистоты воздуха в помещениях. Вентиляция и кондиционирование
  • 34.Эргономические показатели качества производственной сферы
  • 35. Организация рабочего места при использовании эвм
  • 36.Опасные и вредные факторы на рабочем месте оператора пэвм
  • 37.Опасные и вредные производственные факторы, их классификация
  • 38.Аттестация рабочих мест по условия труда
  • 39.Оценка физической тяжести труда. Категории работ по физической тяжести.????
  • 40.Электробезопасность, способы и средства защиты от поражений электрическим током
  • 41.Средства индивидуальной защиты используемые на производстве, требования к ним.
  • 42.Измерения параметров шума и вибрации. Способы борьбы с шумом и вибрацией
  • 28.Производственная вибрация: источники, физические характеристики, виды вибраций, действие на организм человека, нормирование, методы защиты

    Вибрация – это механические колебательные движения, непосредственно передаваемые телу человека от оборудования и строительных конструкций, на которых оно установлено.

    Вибрация возникает при работе машин и механизмов, имеющих неуравновешенные и несбалансированные вращающиеся органы или органы движения возвратно-поступательного и ударного характера. К таковым относятся металлообрабатывающие станки, ковочные и штамповочные молота, электро- и пневмоперфораторы, механизированный инструмент, а также приводы, вентиляторы, насосные установки, компрессоры и др.

    Источниками вибраций на производстве являются передвижные строительные машины, машины для виброуплотнения бетонной смеси, строгальные, шлифовальные, ручной механизированный инструмент и др.

    Вибрация характеризуется:

    Амплитудой А, м;

    Колебательной скоростью υ, м/с;

    Ускорением а, м/с2;

    Периодом колебаний Т, с;

    Частотой колебаний f, Гц.

    По способу передачи вибрация подразделяется на

    Общую, передающуюся через опорные поверхности на тело стоящего или сидящего человека;

    Локальную, передающуюся через руки.

    Влияние вибрации на человека зависит от направления ее действия, поэтому вибрация подразделяется на действующую вдоль осей ортогональной системы координат X, Y, Z.

    Общая вибрация, особенно на частотах 5…25 Гц, близких к собственным частотам человека (6…9 Гц), оказывает неблагоприятное воздействие на нервную, сердечно-сосудистую систему, вестибулярный аппарат, обмен веществ.

    Местная вибрация, вызывая спазм периферических сосудов, вызывает различную степень сосудистых, нервно-мышечных, костно-суставных нарушений в конечностях (онемение, похолодание, боли, костно-мышечные изменения).

    Профзаболевание, развивающееся под действием вибраций, называется вибрационной болезнью. Вибрационная болезнь приводит к инвалидности (III, IV стадии), плохо поддается лечению. Действие вибрации усугубляется низкими температурами, также вызывавшими спазм кровеносных сосудов.

    Таблица. Влияние вибрации на организм человека

    Амплитуда колебаний вибрации, мм Частота вибрации, Гц Результат воздействия

    До 0,0 15 Различная Не влияет на организм

    0,016–0,050 40–50 Нервное возбуждение с депрессией

    0,051–0,100 40–50

    Изменение в центральной нервной системе, сердце и органах слуха

    0,101–0,300 50–150 Возможно заболевание

    0,101–0,300 150–250 Вызывает виброболезнь

    Нормирование вибраций производится по ГОСТ 12.1.012–90 ССБТ «Вибрация. Общие требования безопасности»: по спектру среднеквадратической колебательной скорости (м/с) (или ускорения, м/с2), ее уровню (дБ), а также по дозе вибрации с учетом частоты и времени.

    Отдельно нормируются местные (локальные) (f = 8…1000 Гц), общие вибрации; последние подразделяются на транспортные (f = = 1…63 Гц), транспортно-технологические (f = 2…63 Гц) и технологические (f = 2…63 Гц). Для борьбы с вибрацией в источнике возникновения необходимо ориентироваться на безударную технику и технологию, повышать качество изготовления и монтажа механизмов, совершенствовать качество дорожных покрытий и др.

    В тех случаях, когда не удается снизить вибрацию в источнике ее возникновения, необходимо применять методы снижения вибрации на путях распространения: виброгашение, виброизоляцию или вибродемпфирование.

    Основным показателем, определяющим качество любого вида виброзащиты, является коэффициент эффективности виброзащиты (коэффициент передачи) µ, представляющий собой отношение скорости (ускорения) защищаемого объекта после устройства виброзащиты (υ0, а0) к значению до введения виброзащиты (υ, а): µ = υ0 / υ = а0 / а, т.е. показывающий, какая доля динамической силы, возбуждаемой машиной F, передается на основание: µ = F0 / F.

    Виброгашение связано с введением в колебательную систему реактивных сопротивлений, что достигается увеличением массы или жесткости. С этой целью вентиляторы, насосы устанавливаются на опорные плиты и виброгасящие основания.

    Виброизоляция достигается также установкой оборудования без фундаментов и анкерного крепления агрегатов непосредственно на упругих виброизолирующих опорах. Это удешевляет установку оборудования, снижает уровень шума, сопутствующего интенсивным вибрациям. Виброизоляция предусматривается при прокладке воздуховодов вентиляционных систем внутри строительных конструкций и при креплении к последним. Для ограничения распространения колебаний по воздуховодам практикуется их разделение на отдельные участки с помощью гибких вставок.

    В качестве виброизоляторов используются резиновые или пластмассовые прокладки, одиночные или составные цилиндрические пружины, комбинированные (пружинно-резиновые) и пневматические виброизоляторы («воздушные подушки»).

    Вибродемпфирование. В основу данного метода положено увеличение активных потерь в колебательных системах путем использования вибродемпфирующих покрытий для снижения вибраций, распространяющихся по воздуховодам систем вентиляции, а также газопроводам компрессорных станций. К числу наиболее распространенных вибродемпфирующих покрытий относятся мастичные (мастика ВД, ВПМ, Антивибрит-М) и листовые (пенопласт, войлок, винипор, фольгоизол) материалы.

    В качестве профилактических мер против вибрационной болезни устанавливается предельная продолжительность контакта с источником вибрации (не более 2/3 смены, 20…30-минутные перерывы до и после обеда, 10…15-минутные перерывы через каждые 50 минут работы, непрерывная продолжительность воздействия 15…20 минут), тепловые процедуры для конечностей, массаж, гимнастика, обязательные периодические медицинские осмотры.

    Температура воздуха должна быть не ниже +16°С, влажность – 40…60%, скорость движения воздуха – 0,3 м/с.

    Для индивидуальной защиты применяется спецобувь, защитные рукавицы, а также виброзащиные прокладки или пластины.