Рельсовая сталь и маркировка рельсов. Производство железнодорожных рельсов. Используемые материалы, сроки и период эксплуатации

В настоящее время готовую сталь разливают в формы (изложницы), где она застывает в виде слитков. Слитки перед прокатом помещают в специальные нагревательные колодцы для подогрева до необходимой температуры. Разогретый слиток стали обрабатывают первоначально на блюминге, придавая слитку форму болванки прямоугольного сечения, называемую блюмсом. Блюмс передают далее в прокатный стан, где он проходит через валки из ручья в ручей; при этом он вытягивается в длину и постепенно меняет форму, принимая по выходе из последнего ручья профиль заданных размеров. Полученную таким образом полосу затем разрезают на рельсы нормальной длины, производят выправку отдельных искривлений, высверливают отверстия для болтов.

Технология изготовления рельсов постоянно совершенствуется. Улучшен процесс изменения поперечного сечения блюмса в последовательно проходимых им ручьях прокатного стана (так называемая калибровка рельсов). При прокате по новой калибровке обеспечивается более интенсивная обработка металла подошвы рельсов, что резко сокращает количество волосовин в подошве, получающихся литые заготовки от раскатывания подкорковых пузырей.

Осуществлен ряд мер по удалению усадочной раковины и околоусадочной рыхлости металла. Введено замедленное охлаждение рельсов после проката в закрытых коробах и охлаждающих колодцах, позволяющее предупреждать образование флокенов. Очень важно, чтобы сталь не имела флокенов - мелких внутренних трещин, возникающих в связи с выделением водорода при остывании стали. Существенное повышение качества рельсов даёт совершенствование способа раскисления рельсовой стали. В процессе варки стали происходит некоторое окисление железа. Для его восстановления в сталь добавляют алюминий. Но, соединяясь с кислородом, алюминий образует неметаллические включения (глинозем), загрязняющие сталь и снижающие стойкость рельсов против появления трещин.

Раскислителями являются комплексные ферросплавы, содержащие кремний, ванадий или магний и титан. Применение этих раскислителей повышает стойкость рельсов против появления трещин контактно-усталостного характера на 20...25%. Повышение эксплуатационной стойкости рельсов достигается улучшением чистоты стали, термическим упрочнением и легированием.

      Термоупрочнение стали

Выполняется следующими способами:

    объёмная закалка с охлаждением в масле после печного нагрева;

    поверхностная закалка головки рельсов водовоздушной смесью после нагрева её токами высокой частоты;

    используется технология закалки рельсов в расплавах солей.

Заключающаяся в том, что рельсы нагреваются до температуры 840...870°С в проходной печи (40...60 мин), а затем охлаждаются (8... 40 мин) в расплаве солей калиевой селитры и нитрата натрия, содержащих 0,6...0,7% воды, до температуры 290...295 °С. Последующее охлаждение рельсов происходит на воздухе. Остатки солей с поверхности рельсов смывают водой.

Способ закалки рельсов в солях имеет преимущества перед упрочнением в масле. Во-первых, высокая температура солей предупреждает искривление рельсов, вследствие чего существенно уменьшается холодная правка рельсов. Во-вторых, в расплаве солей в интервале температур структурных превращений рельсы остывают быстрее, чем в масле, что улучшает прочность, пластичность и вязкость стали. В-третьих, при этом способе закалки можно изготовлять рельсы из низколегированной стали с прочностью выше 1400 МПа.

Отпадает также необходимость в громоздких отпускных печах, которые используются при закалке рельсов в масле. Рельсы после полного остывания подвергаются холодной правке на роликоправильных машинах и штемпельных прессах. Перед холодной правкой допускается равномерная общая по всей длине кривизна рельсов в вертикальной и горизонтальной плоскостях со стрелой прогиба не более 1/60 длины рельса. После холодной правке к рельсу предъявляются требования по ряду показателей.

2 КАТАЛОГ ТИПОВ РЕЛЬС И ХАРАКТЕРИСТИК

Тип рельса

Временное сопротивление, н/мм2(кгс/мм2)

Предел текучести, н/мм2(кгс/мм2)

Относительное удлинение, %

сужение, %

Ударная вязкость,kcuдж/см2 (кгсм/см2)

Твердость на поверхности катания, нв

Таблица 2.2 - Химический состав стали

Марка стали

Массовая доля элементов, v р Не более

0,03-0,15 0,025

Таблица 2.4 – Химический состав

Марка стали

Массовая доля элементов, %

Не более

Рельсы железнодорожные типа рп50, рп65, рп65к, р43 для путей промышленного железнодорожного транспорта

Таблица 2.5 - Механические свойства

Твердость на поверхности катания термоупрочненных рельсов 311-420 НВ.

Таблица 2.6 - Химический состав стали

Тип рельса

Марка стали

Не более

Не более

Рельсы рамные типа р65. Предназначены для изготовления соединений и пересечений железнодорожного пути

Марка стали

Не более

Рельсы железнодорожные узкой колеи шахт р18, р24

Таблица 2.10 - Механические свойства

[Статья] Рельсовая сталь и маркировка рельсов

Рельсовая сталь и маркировка рельсов


Рельсовая сталь

Материалом для рельсов служит рельсовая сталь. Рельсы изготавливаются двух групп: I группа - из спокойной мартеновской стали, раскисленной в ковше комплексными раскислителя-ми без применения алюминия или других раскислителей, образующих в стали вредные строчечные неметаллические включения; II группа - из спокойной мартеновской стали, раскисленной алюминием или марганец-алю-миниевым сплавом.

Качество стали определяется ее химическим составом (табл. 1.2).


С повышением в стали углерода С повышается общая прочность рельсов при изгибе, твердость и износостойкость. Марганец Mn увеличивает твердость, износостойкость и вязкость рельсовой стали, а кремний Si - твердость и износостойкость. Фосфор Р и сера S - вредные примеси. При низких температурах рельсы с большим содержанием фосфора становятся хрупкими, а серы - красноломкими (при прокате рельсов образуются трещины). Ванадий, титан и цирконий - микролегирующие и модифицирующие добавки, улучшающие структуру и качество стали.

Макроструктура современной углеродистой рельсовой стали представляет пластинчатый перлит с небольшими прожилками феррита на границах перлитных зерен. Значительная твердость, сопротивление износу и вязкость углеродистых сталей достигаются приданием им однородной сорбитной структуры (с помощью специальной термической обработки).

Механические свойства стали для рельсов I и II групп при испытаниях на растяжение должны соответствовать данным, приведенным в табл. 1.3.

Эти данные соответствуют рельсам, изготовленным из мартеновской стали, не закаленным по всей длине.

Сталь для рельсов должна иметь чистое, однородное, плотное мелкозернистое строение (макроструктуру).

Технология изготовления рельсов должна гарантировать отсутствие в них флокенов, а также местных неметаллических включений (глинозема, карбидов и нитридов титана или глинозема, сцементированного силикатами), вытянутыми вдоль направления проката в виде дорожек - строчек.

Поверхность головки рельса на его концах подвергается закалке с прокатного или индукционного нагрева токами высокой частоты.

Для обеспечения большей износостойкости и долговечности рельсы изготавливают из мартеновской высокоуглеродистой стали (типы Р75, Р65, Р50), подвергая их герметической обработке по всей длине путем объемной закалки в масле с последующим печным отпуском (ГОСТ 18267-82). Макроструктура закаленного металла головки рельса представляет собой сорбит закалки. Твердость по Бринеллю на поверхности катания головки закаленных рельсов должна быть в пределах 341-388 НВ, шейки и подошвы - не более 388 НВ.


Механические свойства объемноза-каленных рельсов должны характеризоваться величинами не менее указанных ниже:

Рельсы, полностью удовлетворяющие техническим требованиям и стандартам, относятся к 1-му сорту. Рельсы, имеющие отклонения в химическом составе и механических свойствах, относятся ко 2-му сорту.

Объемнозакаленные рельсы имеют срок службы в 1,3-1,5 раза выше, чем обычные.

Условия эксплуатации рельсов на дорогах Сибири и Дальнего Востока почти вдвое тяжелее, чем в Европейской части России. Поэтому в настоящее время созданы рельсы низкотемпературной надежности Р65, объемнозакаленные I группы, изготовляемые из ванадий-ниобий-боросодержащей стали с использованием для легирования азотированных ферросплавов. Для этих рельсов используется электросталь, варка которой производится в дуговых печах.

При температуре минус 60 °С рельсы из электростали выдерживают ударные нагрузки вдвое большие, чем рельсы из мартеновской стали.

В настоящее время российские рельсы - одни из лучших в мире. Однако японские, французские, шведские и канадские рельсы имеют значительно более низкий уровень собственных напряжений и большую чистоту рельсовой стали, а также прямолинейность. Именно поэтому сейчас началась их закупка для участков скоростного движения российских железных дорог.

Маркировка, сроки службы рельсов и мероприятия по их продлению

Маркировка рельсов производится для правильной укладки их в путь и для определения места и времени изготовления каждого отдельного рельса. Она подразделяется на основную (постоянную), выполняемую во время прокатки клеймением в горячем и холодном состоянии (рис. 1.2) и дополнительную или временную, выполненную краской. Основная заводская маркировка указывает соответствие рельсов


требованиям стандартов, а дополнительная отмечает особенности каждого рельса (укорочение, сорт и т. д.).

Завод, изготовляющий рельсы, гарантирует исправную службу рельсов в пути в течение срока наработки, исчисляемого в миллионах тонн брутто пропущенного тоннажа Т. Рельсы изымаются с пути или по износу головки или по дефектности. Как правило, вертикальный износ головки не достигает предельных значений при норме наработки Т, при которой производят сплошную смену рельсов из-за их предельного выхода по одиночным дефектам.

В настоящее время принята классификация дефектов рельсов, приведенная в табл. 1.4.

Интенсивность одиночного выхода рельсов зависит от их наработки (пропущенного по ним тоннажа), конструкции пути, нагрузок на рельсы от колесных пар обращающегося подвижного состава, плана и профиля пути, типа рельсов, качества стали и других факторов. На рис. 1.3 приведены осредненные для сети бывшего СССР кривые нарастания одиночного изъятия нетермообработанных рельсов на прямых и пологих кривых в зависимости от пропущенного тоннажа при звеньевом пути на деревянных шпалах.

Объемнозакаленные рельсы имеют значительно меньший выход, что видно, например, на графике рис. 1.4 для линии С.-Петербург - Москва.

Наибольшее одиночное изъятие дефектных рельсов производится из-за недостаточной контактно-усталостной прочности металла, из-за чрезмерного бокового износа головки в кривых и из-за коррозии подошвы рельса и кор-розионно-усталостных трещин (дефекты 44, 17, 21, 14, 11, 69 - см. табл. 1.4).



Продление сроков службы рельсов в настоящее время производится путем применения ресурсосберегающих технологий, в частности, хорошим средством восстановления служебных свойств рельсов является их периодическая шлифовка в пути или острожка старогодных рельсов на рельсосварочных предприятиях. Для шлифовки рельсов применяются рельсошлифовальные механизмы и рельсошлифовальные поезда с абразивными кругами.

Повышение качества рельсов ведется по трем основным направлениям: повышение чистоты рельсовой стали; повышение твердости рельсового металла и улучшение его структуры; повышение прямолинейности рельсов при изготовлении. Разрабатывается также рельс Р65ш, который будет иметь запас в высоте головки (6...7 мм) на последующую шлифовку.

__________________

Зарегистрируйтесь , чтобы скачивать файлы.
Внимание! Перед скачиванием книг и документов установите программу для просмотра книг отсюда
. Примите участие в развитии ж/д вики-словаря / Журнал "АСИ" онлайн

Книги по СЦБ | Книги путейцам | Книги машинистам | Книги движенцам | Книги вагонникам | Книги связистам | Книги по метрополитенам | Указания ГТСС


Если не можете скачать файл... / Наше приложение ВКонтакте / Покупаем электронные версии ж.д. документов

Технология изготовления рельсов.

Первой задачей при производстве рельсов является получение слитка, однородного по всей длине. После затвердевания слитки доставляют к нагревательной печи, где их подогревают до температуры прокатки. Затем слитки, доставленные к блюмингам на специальных тележках, пропускаются через валки верхними концами вперед; здесь слитки 4 раза сильно обжимаются медленно вращающимися валками. Для удаления загрязненного металла головной и хвостовой концы блюмса обрезаются; блюмс делится на две части, из которых каждая в свою очередь делится на два, три или четыре рельса, в зависимости от длины и поперечного сечения профиля, для которого они предназначаются.
Данные, касающиеся веса и типа рельса, рода стали, завода-изготовителя, месяца и года прокатки наносят на одну сторону шейки рельса в виде выпуклых букв; буквы выкатываются нижними валками при последнем проходе рельса. К клейму добавляются также буквы, указывающие на то, что рельсы изготовлены из стали со средним содержанием марганца с применением регулируемого охлаждения, что они подвергались термической обработке и что концы их закалены. Поскольку после разлива стали порядковые номера плавок и слитков сохраняются, то на рельсах указывают также номер плавки и слитка. Эти данные выбивают на клеймовочном станке на противоположной стороне шейки, пока рельс еще находится в горячем состоянии. Слитки прокатываются головными концами вперед; рельсы последовательно маркируются буквами А, В, С, D и т. д.

После окончания прокатки, пока сталь еще не остыла, прокатанную полосу разрезают на куски нужной длины.

Следующая операция заключается в пропуске рельсов через ряд роликов, изгибающих рельсы так, чтобы после охлаждения их до температуры окружающего воздуха они оказались совершенно прямыми.

После охлаждения ось рельсов, как и других прокатанных в горячем состоянии профилей, несколько искривляется, вследствие чего требуется выправка рельсов в правильных прессах. Торцы рельсов очищаются от заусенцев, образующихся при распиловке рельсов в горячем состоянии, и шлифуются вращающимися шлифовальными кругами.
Обычно в каждом конце рельса сверлят по два или по три болтовых отверстия, в зависимости от длины применяемых стыковых накладок; однако, если рельсы предназначены для сварки их в длинные плети, концы остаются непросверленными.

Прежде чем погрузить рельсы для отправки потребителям, их распределяют по группам в зависимости от содержания в металле углерода, качества прокатки, структуры стали и отклонения их длины от стандартной; после этого концы всех рельсов, кроме рельсов с низким содержанием углерода, окрашивают в один из пяти легко различимых цветов для того, чтобы было легко находить нужные рельсы при их распределении. Распределение рельсов по группам, маркировка и погрузка производятся в соответствии с «Маркировка с распределением рельсов по группам» и «Погрузка» приведенных ниже Технических условий AREA на рельсы из мартеновской стали.

Рельса – это металлическая балка, имеющая оригинальное сечение. Она применяется для создания опоры, по которой передвигается железнодорожный транспорт. Впервые рельсы начали изготавливать в Древнем Риме, но тогда для их изготовления использовалось дерево, а расстояние между ними было строго 143 см. Установка рельс производится в параллельной плоскости относительно друг другу. В результате образуется «двухниточный путь».

Основная задача рельс – направлять колеса транспорта и принимать на себя нагрузку с последующим ее распределением на нижние элементы верхнего пути. В случае использования составов в зонах, передвижение в которых невозможно без электрической тяги, рельсы играют роль проводника тока, а для зон, применяющих автоблокировку, рельсы являются проводником.

Материал изготовления

В большинстве случаев для изготовления рельсов используется углеродистая сталь. На качество этого материала оказывают влияние некоторые факторы, например, микроструктура и макроструктура стали, ее химическое строение и т. д. Наличие углерода придает рельсе большей долговечности и надежности.

Однако избыток углерода в составе стали может оказать негативное воздействие. При его чрезмерном количестве значительно повышается хрупкость. Именно поэтому при добавлении углерода стоит позаботиться и о том, чтобы структура стали балы максимально прочной.

Для повышения качества исходного материала применяются и другие вещества. В последнее время все чаще прибегают к обработке рельсов марганцем. Это повышает устойчивость металла к повреждениям механического характера, делает его более долговечным и вязким. Добавление кремния в состав стали повышает ее износоустойчивость и твердость. Также можно использовать титан, ванадий и цирконий. Эти микроэлементы способны значительно улучшить качественные характеристики стали.

Ни в коем случае нельзя добавлять серные и фосфорные добавка, так как они делают сталь более уязвимой к ломке и повышают хрупкость. Очень часто в деталях, изготовленных с добавлением этих веществ, можно наблюдать наличие трещин и разломов.

Выше уже шла речь о том, что сталь имеет свою микроструктуру и макроструктуру. В качестве основного материала для первой структуры используется перлит. Его форма напоминает пластины, содержащие феррит. Добиться однородного состава стали можно с помощью ее закаливания, то есть обработать ее при очень высокой температуре. Закаливание повышает износостойкость, долговечность, надежность, жесткость и вязкость металла. Для макроструктуры наличие лишних веществ или пустот является недопустимым.

Физические характеристики рельсов

Настоящий профиль рельсов не всегда был таким. Он терпел изменения с течением времени. История помнит угловые, двухголовые, грибовидные, широкоподошвенные и другие рельсы.

Конструкция современного широкоподошвенного рельса включает в себя подошву, головку и шейку, которая выступает в качестве соединительного элемента между этими двумя частями. Центральная часть делается немного выпуклой для того, чтобы нагрузка с колес переносилась на центральную область рельса. Места соединения шейки с подошвой и головкой имеют плавные формы. Для снятия напряжения с шейки ее делают в виде кривой. Чем шире основание подошвы рельса, тем выше ее боковая устойчивость.

Существует несколько стандартных размеров рельсов. Для Российской Федерации свойственно выпускать рельсы длинной 12,5, 25, 50, 100 м.

Также существует возможность выпускать рельсы и меньшей длины. Они используются на неровных участках железнодорожного пути. Длина бесстыкового пути составляет не менее 400 м и может достигать перегонной длины. Чем выше длина рельса, тем меньше сопротивление передвижения транспорта и, соответственно, ее износ. Сохранение стали при переходе на бесстыковой путь достигает 4 т на 1 км пути. Это возможно благодаря отсутствию элементов крепления в области стыков рельсов.

При расчете мощности материала необходимо учитывать такой параметр, как удельный вес на 1 м рельса. Его измерение принято проводить в килограммах.

Еще один элемент железнодорожного пути – шпалы. Они играют роль крепежного элемента. Благодаря развитию современных технологий появилась возможность производить шпалы не только из железобетона и дерева, но и из стали или пластика.

При расчете стоимости одного рельса учитывается его удельный вес, габаритные параметры (длина и ширина), твердость и степень износоустойчивость.

Типы рельсов

Для того чтобы правильно подобрать необходимы тип рельсов необходимо рассчитать загруженность линии и среднюю скорость, с которой по ней будет передвигаться транспорт. Для примера возьмем массивный рельс с большим весом. Он положительно влияет на износоустойчивость шпал и снижает экономические затраты на обслуживание линии за счет увеличения ее долговечности.

На сегодняшний день существуют такие виды рельсов:

  • Железнодорожные. Этот тип считается наиболее популярным и востребованным. Вес 1 метра такой рельсы составляет 50-65 кг, длина – 12,5 или 50 м.
  • Узкоколейные. Используются при необходимости создания узкого межрельсового пространства. Этот тип рельсов широко используется в горнодобывающей промышленности и в других местах с ограниченной проходимостью.
  • Рудничные. С их помощью производится укладка бесстыковых путей. Также они очень популярны в промышленной сфере.
  • Трамвайные. Название говорит само за себя. Не рассчитаны на большую загруженность линии. Эти рельсы весят относительно немного, что приводит к их быстрому износу.
  • Крановые. Применяются в тех местах, где необходимо создание путей для перемещения подъемного крана.
  • Подкрановые. Такие рельсы считаются наиболее тяжелыми. В некоторых случаях допускается укладка сразу в несколько рядов.
  • Рамные. Их используются в местах постройки переводных механизмов.
  • Контррельсовые. Используются при работе в верхних конструкциях ж/д путей.
  • Остряковые. Сфера применения аналогична контррельсовому типу. Вид остряковых рельсов ОР43 можно выделить отдельно. Он используется для возведения ж/д путей.

Где купить данные виды рельс? Рекомендуем покупать у надежный поставщиков. В Екатеринбурге рельсы можно приобрести в торговой компании «Рельс-Комплект» . Компания реализует ж/д продукцию высокого качества от ведущих отечественных заводов, отвечающую нормам ГОСТов.

Классификация рельсов осуществляется по нескольким параметрам:

  • Наличию отверстий, предназначенных для соединительных элементов (болтов).
  • Способу выплавления стали.
  • Качеству. По этому параметру рельсы подразделяются на термоупрочненные и нетермоупрочненные.

Эти характеристики напрямую влияют на стоимость рельса.

Условные обозначения

На каждой рельсе присутствует маркировка, состоящая из нескольких групп цифр и букв. Каждая буква означает определенный параметр:

  • А – тип рельса.
  • В – категория качества.
  • С – марка используемой стали.
  • D – протяженность рельса.
  • Е – наличие отверстий под болты.
  • F – ГОСТ.

Например, маркировка рельса Р65-Т1-М76Т-25-3/2 ГОСТ Р 51685-2000 говорит о том, что это рельс железнодорожного типа категории Т1. Для его изготовления использовалась сталь марки М76Т. Длина рельса составляет 25 м. Имеет 3 отверстия для болтов на каждом конце. Соответствует указанному стандарту ГОСТ.

Страница 2 из 10

Назначение рельсов и требования, предъявляемые к ним

Основной несущий элемент верхнего строения пути - рельсы . Они представляют собой стальные брусья специальных сечений, по которым движется подвижной состав. Стандартными и общепринятыми рельсами на всех дорогах мира являются рельсы широкоподошвенные.

(рис. 1) состоит из трех основных частей:

  • головки;
  • подошвы;
  • шейки, соединяющей головку с подошвой.

Рельсы являются главнейшим элементом верхнего строения пути. Они предназначены:

  • непосредственно воспринимать давления от колес подвижного состава и передавать эти давления нижележащим элементам верхнего строения пути;
  • направлять колеса подвижного состава при их движении;
  • на участках с автоблокировкой служить проводником сигнального тока, а при электротяге - обратного силового тока. Поэтому рельсовые нити должны обладать необходимой электропроводимостью.

Основные требования к рельсам состоят в том, что они должны быть устойчивыми и прочными; обладать наибольшим сроком службы; обеспечивать безопасность движения поездов; быть удобными и недорогими в эксплуатации и изготовлении.

Рис. 1 - Широкоподошвенный рельс

Если более подробно, то назначение и экономические соображения определяют следующие требования к рельсу:

  1. Для обеспечения безопасности движения поездов, имеющих большие осевые нагрузки, с максимальными скоростями рельсы должны быть более тяжелыми. В то же время для экономии металла и удобства погрузки, выгрузки, смены эти же рельсы должны иметь рациональный и по возможности наименьший вес.
  2. Для лучшего сопротивления изгибу под подвижной нагрузкой рельсы должны быть достаточно жесткими (иметь наибольший момент сопротивления). В то же время во избежание жестких ударов колес о рельсы, могущих вызвать излом отдельных деталей ходовых частей подвижного состава, а также расплющивание и даже излом рельсов, необходимо, чтобы рельсы были достаточно гибкими.
  3. Для того чтобы рельсы от ударно-динамических воздействий колес подвижного состава не ломались, материал рельсов должен быть достаточно вязким. Ввиду же концентрированной передачи давлений от колес по очень небольшим площадкам в местах контакта колес рельсов требуется, чтобы металл рельсов не сминался, не истирался, дольше служил и был достаточно твердым.
  4. Для обеспечения достаточной силы сцепления между рельсами и движущими колесами локомотивов необходимо, чтобы поверхность катания рельсов была шероховатой. Для уменьшения же сопротивления движению остальных колес - вагонов, тендеров и поддерживающих колес локомотивов - необходимо, чтобы поверхность катания рельсов была гладкой;
  5. Для стандартизации элементов верхнего строения пути, приводящей к простоте и удешевлению их содержания, необходимо, чтобы число типов рельсов было наименьшее. Из интересов же экономии металла немыслимо, чтобы на всех линиях железных дорог независимо от грузонапряженности, осевых нагрузок и скоростей движения поездов укладывались рельсы одного типа. Число типов рельсов должно быть минимальным, но разумным.

Таким образом, требования и условия, которым должны удовлетворять рельсы, являются исключительно важными, необходимыми и вместе с тем противоречивыми. Все это чрезвычайно усложняет решение рельсовой проблемы вообще. Ее решение представляет собой одну из важнейших задач транспортной науки и техники.

Материал рельсов

Современные рельсы прокатывают только из стальных слитков. Сталь изготовляют в конвертерах по способу Бессемера или в мартеновских печах. Бессемеровскую сталь получают в результате продувки расплавленного чугуна кислородом (15-18 мин). При этом выгорает углерод и часть примесей. Мартеновскую сталь варят из чугуна и стального лома в больших печах емкостью от 200 до 1500 тонн в течение нескольких часов. Эта сталь чище и менее хладноломка, чем бессемеровская. Рельсы тяжелых типов (Р65 и Р75) прокатывают только из мартеновской стали.

Качество рельсовой стали определяется ее химическим составом, микро- и макроструктурой. Химический состав стали отечественных рельсов характеризуется добавками к железу в процентах (смотрите таблицу ниже).

Тип рельса Марка стали Углерод Марганец Кремний Фосфор Сера Мышьяк Временное сопротивление, МПа (кгс/мм 2), не менее Относительное удлинение, %
Р75(Р65) М-76 0,71-0,82 0,75-1,05 0,20-0,40 ≤0,035 ≤0,045 ≤0,15 885(90) 4
Р50 М-75 0,69-0,80 0,75-1,05 0,20-0,40 ≤0,035 ≤0,045 ≤0,15 765(88) 5

Углерод повышает твердость и износостойкость рельсовой стали. Однако чем выше содержание углерода, тем больше при прочих равных условиях хрупкость стали и затруднительней холодная правка рельсов. Поэтому требуется более равномерное распределение металла по сечению рельса, более жестко должен выдерживаться химический состав, особенно это касается фосфора и серы.

Марганец повышает твердость и износоустойчивость стали, обеспечивая ей достаточную вязкость.

Кремний улучшает качество стали, увеличивая твердость металла и его сопротивляемость износу.

Фосфор и сера - вредные примеси, они придают стали хрупкость: при большом содержании фосфора рельсы получаются хладноломкими, при большом содержании серы - красноломкими.

Мышьяк несколько увеличивает твердость и износостойкость рельсовой стали, но его излишек уменьшает ударную вязкость.

Микроструктура устанавливается под микроскопом с увеличением в 100-200 раз. Компоненты обычной рельсовой стали - феррит, состоящий из свободного от углерода железа Fe, и перлит, который представляет собой смесь феррита и цементита.

Изучение микроструктуры рельсовой стали показывает, что она приобретает способность к значительному сопротивлению износу и вязкость при сорбитовой структуре, которая получается в результате специальной термической обработки.

В настоящее время наибольшее распространение получила объемная закалка рельсов. Она повышает пластичность и вязкость, увеличивает усталостную прочность и стойкость рельсов против образования поперечных усталостных изломов. Эксплуатационная стойкость таких рельсов в 1,3-1,5 раза выше эксплуатационной стойкости незакаленных рельсов. По технико-экономическим расчетам, использование объемнозакаленных рельсов с среднем за год на 1 км пути дает значительную денежную экономию.

Важнейшее значение для качества рельсовой стали имеет ее макроструктура (строение в изломе при рассмотрении невооруженным глазом или при помощи лупы). Сталь должна иметь однородное мелкозернистое строение без шлаковин, волосовин, плен, следов неоднородного распределения химических добавок по сечению. Улучшение качества достигается строгим соблюдением технических условий и непрерывным совершенствованием технологии изготовления стали и проката рельсов. Плотность рельсовой стали принята равной 7,83 т/м 3 .

Форма и размеры рельсов

Профиль рельсов

Служебные свойства рельсов в основном характеризуются их массой, отнесенной к 1 м длины, профилем поперечного сечения (рис. 2) и механическими характеристиками металла, из которого они изготовлены. Чтобы увеличить сопротивление вертикальным силам, рельсу придают форму двутавровой балки, верхняя полка которой (головка рельса ) приспособлена для контактирования с колесами подвижного состава, а нижняя (подошва рельса ) - для закрепления на опорах. Вертикальная стенка, соединяющая головку и подошву, называется шейкой .

Рис. 2 - Основные части рельсов

Профиль рельсов обусловлен взаимодействием его с колесами подвижного состава и конструктивным оформлением элементов верхнего строения пути. Типичный профиль современных широкоподошвенных рельсов представлен на (рис. 3).

Поверхность катания головки всегда делают выпуклой, чтобы обеспечить наиболее благоприятную передачу давления от колес. Для рельсов типов Р75, Р65 и Р50 больший радиус R 1 этой поверхности принят равным 300 мм. К граням кривизна изменяется до радиуса R 2 , равного 80 мм. В рельсах типа Р43 поверхность катания головки рельса очерчена одним радиусом R 1 .

Рис. 3 - Современный широкоподошвенный рельс

Поверхность катания сопрягается с боковыми гранями головки по кривой радиусом r 1 (рис. 3), по величине близким к радиусу выкружки бандажа. В рельсах типов Р75, Р65 и Р50 r 1 равен 15 мм.

Боковые грани головки или вертикальны, или наклонны. У рельсов типов Р75, Р65 и Р50 этот наклон (1:k ) принят равным 1:20. Боковые грани головки стремятся сопрягать с нижними наименьшими радиусами r 2 , равными 1,5-4 мм. Это делается для того, чтобы опорная поверхность для накладок была наибольшей. По этим же соображениям принимают такими же и радиусы r 6 и r 7 .

Опорными поверхностями для накладок служат нижние грани головки и верхние грани подошвы рельса. В настоящее время наиболее распространены такие углы α, при которых tg α = 1:n для рельсов типов Р75, Р65 и Р50 составляет 1:4.

Сопряжение нижних граней головки с шейкой должно обеспечивать достаточную опорную поверхность для накладки и наиболее плавный переход от толстой головки к сравнительно тонкой шейке в целях снижения местных напряжений и равномерности остывания рельсов при прокатке. В рельсах типов Р75, Р65 и Р50 приняты r 3 = 5÷7 мм и r 4 = 10÷17 мм.

Шейка современного рельса имеет криволинейное очертание радиусом R ш (от 350 до 450 мм для отечественных рельсов), которое в наибольшей мере обеспечивает плавность перехода от шейки к подошве и головке.

Сопряжение шейки с подошвой выполнено радиусом r 6 , величина которого диктуется теми же соображениями, что и величины радиусов r 3 и r 4 . Переход к наклонной верхней поверхности подошвы у рельсов типов Р75, Р65 и Р50 сделан по радиусу r 5 , равному 15-25 мм.

На железных дорогах РФ применяют рельсы типов Р75, Р65 и Р50 (рис. 4), имеющие массу 74,4; 64,6 и 51,6 кг/пог. м. Преобладающими при укладке сейчас являются рельсы типа Р65; на особо грузонапряженных линиях - термически упрочненные рельсы типа Р75. Изготавливают их длиной 25 метров.

Рис. 4 - Стандартные профили рельсов: а - типа Р75; б - Р65; в - Р50

Длина рельсов

На дорогах мира стремятся шире применять длинные рельсы и сварные рельсовые плети. За счет этого уменьшается число стыков, что улучшает условия взаимодействия пути и подвижного состава, дает большой экономический эффект. Например, если вместо рельсов типа Р65 длиной 12,5 м уложить рельсы того же типа, но длиной 25 м, то за счет уменьшения потребности в стыковых скреплениях на каждых 1000 км будет сэкономлено 3902 тонн металла. Кроме того, уменьшение числа стыков примерно на 10% снизит сопротивление движению поездов, уменьшит износ колес подвижного состава и расходы на текущее содержание пути.

Стандартная длина современных рельсов в различных странах колеблется от 10 до 60 м: в РФ 25 м; в Чехословакии 24 и 48 м, в ГДР и ФРГ 30, 45 и 60 м; во Франции 18, 24 и 36 м; в Англии 18, 29 м; в Японии 25 м; в США 11, 89 и 23, 96 м. В РФ для стрелочных переводов в ограниченном количестве прокатывают рельсы длиной 12,5 м.

Кроме рельсов стандартной длины, применяют и укороченные для укладки на внутренних нитях кривых участков пути. В РФ такие рельсы имеют укорочение на 80 и 160 мм, а при длине 12,5 м - на 40, 80 и 120 мм.

Масса (вес) рельсов

Основной характеристикой, дающей общее представление о типе и мощности рельса, - является его вес , выраженный в килограммах на один погонный метр.

Определение оптимального веса рельса - задача чрезвычайно трудная, так как он зависит от большого количества факторов: осевых нагрузок, скоростей движения поездов, грузонапряженности, качества рельсовой стали, профиля рельса и других.

Масса рельсов определяется из следующих соображений:

  • чем больше нагрузки на ось железнодорожного экипажа, скорости движения поездов и грузонапряженность линии, тем большей при прочих равных условиях должна быть масса рельса с ;
  • чем больше масса рельса q , тем меньше при прочих равных условиях эксплуатационные расходы на грузонапряженных линиях (на содержание пути, на сопротивление движению поездов).

В настоящее время имеются различные предложения по определению массы рельса эмпирически, в зависимости от ограниченного количества факторов. Профессор Г. М. Шахунянц предложил определять массу рельса в зависимости от вида подвижного состава, грузонапряженности линии, скорости движения поездов и статической нагрузки на ось локомотива по выражению

где а - коэффициент, равный 1,20 для вагонов и 1,13 - для локомотивов;

T max - грузонапряженность, млн. т·км/км в год;

υ - скорость движения поездов, на которую рассчитывается конструкция пути, км/ч;

Численные значения, входящие в формулу, можно брать из таблицы 1.2

Несомненно, формула, приведенная выше, не отражает всей сложности взаимосвязи факторов, влияющих на выбор веса рельса. Однако она дает возможность принимать решение в порядке первого приближения достаточно обоснованно.

Окончательно массу рельса выбирают на основании расчетов на прочность и экономической целесообразности. Масса стандартных рельсов в РФ принята 44-75 кг/м. Их основные характеристики приведены в (табл. 1.3) и обозначены на (рис. 5). Рельсы Р43 прокатывают в ограниченном количестве для стрелочных переводов.

Рис. 5 - Основные размеры современного рельса (к таблице 1.3)

На железных дорогах других стран рельсы имеют массу, кг/м:

  • США - 30-77;
  • Англия:
    • двухголовые - 29,66-49,53;
    • широкоподошвенные - 22,37-56,5;
  • Франция и Бельгия - 30-62;
  • ГДР и ФРГ - 30-64.

Экономическая эффективность применения тяжелых рельсов

Эффект от использования тяжелых рельсов заключается в их долговечности, снижении расхода материалов, уменьшении сопротивления движению поезда и сокращении затрат на текущее содержание пути.

По данным ВНИИЖТа, если за базу взять рельс типа Р50, то увеличение его массы на 1 кг снижает затраты труда на текущее содержание пути на 1,5-1,8% и уменьшает расход материалов до 1,4%.

Более тяжелый рельс распределяет давление колес подвижного состава на большее количество шпал, вследствие чего уменьшается давление на каждую шпалу, замедляется механический износ и увеличивается срок их службы. Одновременно снижается динамическое давление на балласт, уменьшается истирание, измельчение частиц балласта и его загрязнение.

С увеличением массы рельсов реже возникает надобность в среднем и подъемочном ремонтах пути. По тяжелым рельсам можно перевезти и больше грузов. Так, рельсы Р50 на 15%, а Р65 на 45% тяжелее рельсов Р43, но рельсы Р50 за время службы могут пропустить тоннаж в 1,5 раза, а Р65 в 2 раза больше, чем Р43. С возрастанием массы рельсов уменьшается расход металла на единицу пропускаемого тоннажа и сокращаются затраты на замену рельсов (капитальный ремонт), снижаются сопротивление движению поездов и расходы на тягу.

При экономических расчетах по выбору типа рельса предпочтение отдается рельсу, для которого годовая сумма приведенных строительных и эксплуатационных расходов ∑Э пр при нормированном сроке окупаемости t n является наименьшей. Она определяется по формуле

где А - строительные расходы (стоимость укладки рельсов);

B i - эксплуатационные расходы i -ro года.

Сроки окупаемости дополнительных капиталовложений на укладку тяжелых рельсов невелики - обычно 1,5-4,5 года. Поскольку применять тяжелые рельсы очень выгодно, в РФ их средняя масса (q ср) постоянно увеличивается.

Срок службы рельсов

Ожидаемый срок службы рельсов определяют как для целесообразного ведения путевого хозяйства (например, чтобы знать периодичность смены рельсов), так и для их технико-экономической оценки.

Срок службы рельсов является функцией работы их под подвижным составом, типа и мощности рельсов, характеристик верхнего строения и подвижного состава, условий эксплуатации пути и технологии изготовления рельсов.

Рельсы выходят из строя по износу и дефектам. Их следует изымать из пути при износе на определенную допустимую величину; по этому фактору и определяется срок службы рельсов. Допустимый износ z 0 (рис. 6) головки рельса устанавливают таким образом, чтобы поперечное сечение рельса после износа на величину площади ω 0 обеспечило допускаемые напряжения, и чтобы при изношенных бандажах колес гребни не задевали гайки и головки болтов в стыках рельсов или за части двухголовых накладок, выступающих за головку рельса.

Рис. 6 - Поперечное сечение головки рельса (заштрихована допустимая площадь износа)

Согласно рисунку

ω 0 = bz 0 - ∆,

где b - ширина головки рельса;

z 0 - нормированный предельный износ головки рельса, принимаемый в РФ по ПТЭ;

∆ - учитывает разницу очертания головки и воображаемого прямоугольника, которую принимают равной 70 мм 2 .

Т = ω 0 / β,

где β - удельный износ поперечного сечения головки рельса от прохода 1 млн. т груза брутто, мм 2 .

Величина β определяется для конкретных условий службы рельсов с выполнением тяговых расчетов и учетом качества рельсовой стали. Для приближенных расчетов можно использовать среднесетевые значения β ср (мм 2 /млн. т брутто) из таблицы

Поскольку износ объемнозакаленных рельсов происходит в 1,3-1,5 раза медленнее, чем незакаленных, величину β ср для первых следует скорректировать коэффициентом α, равным примерно 0,65-0,5.

Таким образом, зная ω 0 и β ср, можно найти тоннаж Т , который могут пропустить рассматриваемые рельсы за весь срок службы. При этом если грузонапряженность (годовой тоннаж) Т г данной линии известна и постоянна, то срок службы рельсов в годах на этой линии можно найти так:

Но так как грузонапряженность на наших железных дорогах ежегодно увеличивается, то срок службы рельсов на данной линии по наработке прошедшего тоннажа

где Т 1 , Т 2 , Т 3 , …, Т t - соответственно тоннаж в первый, второй, третий, t -й год после укладки рельсов.

Несмотря на повышение износоустойчивости рельсов, их приходится заменять раньше достижения нормативного износа из-за одиночного выхода из строя по дефектам. Выход рельсов по дефектам происходит как из-за нарушения или несовершенства технологии изготовления, так и по условиям их эксплуатации.

При установлении сроков службы рельсов принимают за допускаемый суммарный одиночный их выход из строя по дефектам: Р50 - 6 штук, а Р65 и Р75 - 5 штук на 1 км пути или наибольший годовой выход для этих рельсов - 2 шт. на 1 км.

Срок службы рельсов между капитальными ремонтами пути в млн. т брутто исходя из одиночного выхода рельсов по дефектам Т од Г. М. Шахунянц предложил определять по формуле

где λ р - коэффициент, учитывающий качество рельсовой стали, дли незакаленных рельсов λ р = 1, а для объемнозакаленных λ р = 1,5;

Член, учитывающий влияние кривизны пути и лубрикации (смазки); при R ≥ 1200 м А = 0 и при R < 1200 м А = 800; при отсутствии смазки боковых граней головки рельсов и гребней колес α луб = 1, при смазке графитомолибденовыми карандашами или для графитовой смазки на солидоловой основе α луб = 0,2;

Член, учитывающий влияние длины рельсов (плети);

Р дн - средняя по тоннажу нормативная нагрузка на рельс от оси колесной пары, установленная в 1964 г. при принятии нормативного срока службы незакаленных рельсов (для Р50 - 350 млн. т груза брутто, для Р65 - 500 млн. т груза брутто), равная для рельсов Р50: Р дн = (1 + 0,012υ i) q ок = (1 + 0,012·50)·14·9,8 = 228,6 кН и для рельсов Р65: P дн = (1 + 0,012·60)·18·9,8 = 303,8 кН;

Р с - средневзвешенная по тоннажу исполненная нагрузка на рельс от оси колесной пары, кН;

q р - масса рельса, кг/м;

γ норм - нормативное значение допускаемого одиночного изъятия рельсов по дефектам (Р50 - 6 шт., Р65 и Р75 - 5 шт. на 1 км пути);

q ок - средняя нагрузка на рельс от оси колесной пары, зависящая от типа рельса.

Из двух значений, найденных по формулам, приведенных выше, для расчета следует принимать наименьшее.

Ограничение срока службы рельсов по одиночному их выходу признать нормальным нельзя, поэтому главнейшая задача - проведение мероприятий, позволяющих увеличить срок службы рельсов согласно их мощности до полного расчетного износа. Этого можно добиться благодаря улучшению качества рельсового металла, в том числе за счет термической обработки; применению бесстыкового пути со сварными рельсовыми плетями увеличенной длины; наплавке изношенных рельсовых концов; улучшению конструкции верхнего строения пути в целом; применению лубрикаторов, смазывающих боковые грани головки рельсов в кривых; улучшению текущего содержания рельсов и пути в целом.

После истечения установленных сроков службы в местах первоначальной укладки рельсы снимают с пути, сортируют, подвергают в рельсоремонтных предприятиях ремонту и сварке и снова укладывают в путь, но уже с более легкими условиями эксплуатации, где они пропускают еще примерно 2/3 начального нормативного тоннажа.

Важными мерами по продлению сроков службы рельсов в пути является шлифовка их головки рельсошлифовальными поездами для удаления с поверхности катания неровностей и поверхностного поврежденного слоя металла, наплавка рельсовых концов, смазка рельсов в кривых для уменьшения бокового износа головки.

Сроки службы обычных высокоуглеродистых рельсов по сравнению с зарубежными в 2-3 раза, а термически упрочненных в 3-4 раза выше; тем не менее этого недостаточно, так как интенсивность использования железнодорожных путей в нашей стране в 6-10 раз больше, чем за рубежом. Поэтому ведутся научные исследования по созданию еще более прочных и долговечных рельсов.