Российская федерация годы существования. Российская федерация незаконна. Устройство Российской Федерации


В некоторых задачах физики непосредственную связь между величинами, описывающими процесс, установить не удается. Но существует возможность получить равенство, содержащее производные исследуемых функций. Так возникают дифференциальные уравнения и потребность их решения для нахождения неизвестной функции.

Эта статья предназначена тем, кто столкнулся с задачей решения дифференциального уравнения, в котором неизвестная функция является функцией одной переменной. Теория построена так, что с нулевым представлением о дифференциальных уравнениях, вы сможете справиться со своей задачей.

Каждому виду дифференциальных уравнений поставлен в соответствие метод решения с подробными пояснениями и решениями характерных примеров и задач. Вам остается лишь определить вид дифференциального уравнения Вашей задачи, найти подобный разобранный пример и провести аналогичные действия.

Для успешного решения дифференциальных уравнений с Вашей стороны также потребуется умение находить множества первообразных (неопределенные интегралы) различных функций. При необходимости рекомендуем обращаться к разделу .

Сначала рассмотрим виды обыкновенных дифференциальных уравнений первого порядка, которые могут быть разрешены относительно производной, далее перейдем к ОДУ второго порядка, следом остановимся на уравнениях высших порядков и закончим системами дифференциальных уравнений.

Напомним, что , если y является функцией аргумента x .

Дифференциальные уравнения первого порядка.

    Простейшие дифференциальные уравнения первого порядка вида .

    Запишем несколько примеров таких ДУ .

    Дифференциальные уравнения можно разрешить относительно производной, произведя деление обеих частей равенства на f(x) . В этом случае приходим к уравнению , которое будет эквивалентно исходному при f(x) ≠ 0 . Примерами таких ОДУ являются .

    Если существуют значения аргумента x , при которых функции f(x) и g(x) одновременно обращаются в ноль, то появляются дополнительные решения. Дополнительными решениями уравнения при данных x являются любые функции, определенные для этих значений аргумента. В качестве примеров таких дифференциальных уравнений можно привести .

Дифференциальные уравнения второго порядка.

    Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    ЛОДУ с постоянными коэффициентами является очень распространенным видом дифференциальных уравнений. Их решение не представляет особой сложности. Сначала отыскиваются корни характеристического уравнения . При различных p и q возможны три случая: корни характеристического уравнения могут быть действительными и различающимися , действительными и совпадающими или комплексно сопряженными . В зависимости от значений корней характеристического уравнения, записывается общее решение дифференциального уравнения как , или , или соответственно.

    Для примера рассмотрим линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами . Корнями его характеристического уравнения являются k 1 = -3 и k 2 = 0 . Корни действительные и различные, следовательно, общее решение ЛОДУ с постоянными коэффициентами имеет вид

    Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Общее решение ЛНДУ второго порядка с постоянными коэффициентами y ищется в виде суммы общего решения соответствующего ЛОДУ и частного решения исходного неоднородного уравнения, то есть, . Нахождению общего решения однородного дифференциального уравнения с постоянными коэффициентами , посвящен предыдущий пункт. А частное решение определяется либо методом неопределенных коэффициентов при определенном виде функции f(x) , стоящей в правой части исходного уравнения, либо методом вариации произвольных постоянных.

    В качестве примеров ЛНДУ второго порядка с постоянными коэффициентами приведем

    Разобраться в теории и ознакомиться с подробными решениями примеров мы Вам предлагаем на странице линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Линейные однородные дифференциальные уравнения (ЛОДУ) и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка .

    Частным случаем дифференциальных уравнений этого вида являются ЛОДУ и ЛНДУ с постоянными коэффициентами.

    Общее решение ЛОДУ на некотором отрезке представляется линейной комбинацией двух линейно независимых частных решений y 1 и y 2 этого уравнения, то есть, .

    Главная сложность заключается именно в нахождении линейно независимых частных решений дифференциального уравнения этого типа. Обычно, частные решения выбираются из следующих систем линейно независимых функций:

    Однако, далеко не всегда частные решения представляются в таком виде.

    Примером ЛОДУ является .

    Общее решение ЛНДУ ищется в виде , где - общее решение соответствующего ЛОДУ, а - частное решение исходного дифференциального уравнения. О нахождении мы только что говорили, а можно определить, пользуясь методом вариации произвольных постоянных.

    В качестве примера ЛНДУ можно привести .

Дифференциальные уравнения высших порядков.

    Дифференциальные уравнения, допускающие понижение порядка.

    Порядок дифференциального уравнения , которое не содержит искомой функции и ее производных до k-1 порядка, может быть понижен до n-k заменой .

    В этом случае , и исходное дифференциальное уравнение сведется к . После нахождения его решения p(x) останется вернуться к замене и определить неизвестную функцию y .

    Например, дифференциальное уравнение после замены станет уравнением с разделяющимися переменными , и его порядок с третьего понизится до первого.

Содержание статьи

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. Многие физические законы, которым подчиняются те или иные явления, записываются в виде математического уравнения, выражающего определенную зависимость между какими-то величинами. Часто речь идет о соотношении между величинами, изменяющимися с течением времени, например экономичность двигателя, измеряемая расстоянием, которое автомашина может проехать на одном литре горючего, зависит от скорости движения автомашины. Соответствующее уравнение содержит одну или несколько функций и их производных и называется дифференциальным уравнением. (Темп изменения расстояния со временем определяется скоростью; следовательно, скорость – производная от расстояния; аналогично, ускорение – производная от скорости, так как ускорение задает темп изменения скорости со временем.) Большое значение, которое имеют дифференциальные уравнения для математики и особенно для ее приложений, объясняются тем, что к решению таких уравнений сводится исследование многих физических и технических задач. Дифференциальные уравнения играют существенную роль и в других науках, таких, как биология, экономика и электротехника; в действительности, они возникают везде, где есть необходимость количественного (числового) описания явлений (коль скоро окружающий мир изменяется во времени, а условия изменяются от одного места к другому).

Примеры.

Следующие примеры позволяют лучше понять, как различные задачи формулируются на языке дифференциальных уравнений.

1) Закон распада некоторых радиоактивных веществ состоит в том, что скорость распада пропорциональна наличному количеству этого вещества. Если x – количество вещества в некоторый момент времени t , то этот закон можно записать так:

где dx /dt – скорость распада, а k – некоторая положительная постоянная, характеризующая данное вещество. (Знак «минус» в правой части указывает на то, что x убывает со временем; знак «плюс», подразумеваемый всегда, когда знак явно не указан, означал бы, что x возрастает со временем.)

2) Емкость первоначально содержит 10 кг соли, растворенной в 100 м 3 воды. Если чистая вода вливается в емкость со скоростью 1 м 3 в минуту и равномерно перемешивается с раствором, а образовавшийся раствор вытекает из емкости с такой же скоростью, то сколько соли окажется в емкости в любой последующий момент времени? Если x – количество соли (в кг) в емкости в момент времени t , то в любой момент времени t в 1 м 3 раствора в емкости содержится x /100 кг соли; поэтому количество соли убывает со скоростью x /100 кг/мин, или

3) Пусть на тело массы m , подвешенное к концу пружины, действует возвращающая сила, пропорциональная величине растяжения пружины. Пусть x – величина отклонения тела от положения равновесия. Тогда по второму закону Ньютона, который утверждает, что ускорение (вторая производная от x по времени, обозначаемая d 2 x /dt 2) пропорционально силе:

Правая часть стоит со знаком минус потому, что возвращающая сила уменьшает растяжение пружины.

4) Закон охлаждения тел утверждает, что количество тепла в теле убывает пропорционально разности температур тела и окружающей среды. Если чашка кофе, разогретого до температуры 90° С находится в помещении, температура в котором равна 20° С, то

где T – температура кофе в момент времени t .

5) Министр иностранных дел государства Блефуску утверждает, что принятая Лиллипутией программа вооружений вынуждает его страну увеличить военные расходы на сколько это только возможно. С аналогичными заявлениями выступает и министр иностранных дел Лиллипутии. Возникающую в результате ситуацию (в простейшей интерпретации) можно точно описать двумя дифференциальными уравнениями. Пусть x и y – расходы на вооружение Лиллипутии и Блефуску. Предполагая, что Лиллипутия увеличивает свои расходы на вооружение со скоростью, пропорциональной скорости увеличения расходов на вооружение Блефуску, и наоборот, получаем:

где члены -ax и -by описывают военные расходы каждой из стран, k и l – положительные постоянные. (Эту задачу впервые таким образом сформулировал в 1939 Л.Ричардсон.)

После того, как задача записана на языке дифференциальных уравнений, следует попытаться их решить, т.е. найти величины, скорости изменения которых входят в уравнения. Иногда решения находятся в виде явных формул, но чаще их удается представить лишь в приближенном виде или же получить о них качественную информацию. Часто бывает трудно установить, существует ли решение вообще, не говоря уже о том, чтобы найти его. Важный раздел теории дифференциальных уравнений составляют так называемые «теоремы существования», в которых доказывается наличие решения у того или иного типа дифференциальных уравнений.

Первоначальная математическая формулировка физической задачи обычно содержит упрощающие предположения; критерием их разумности может служить степень согласованности математического решения с имеющимися наблюдениями.

Решения дифференциальных уравнений.

Дифференциальному уравнению, например dy /dx = x /y , удовлетворяет не число, а функция, в данном конкретном случае такая, что ее график в любой точке, например в точке с координатами (2,3), имеет касательную с угловым коэффициентом, равным отношению координат (в нашем примере 2/3). В этом нетрудно убедиться, если построить большое число точек и от каждой отложить короткий отрезок с соответствующим наклоном. Решением будет функция, график которой касается каждой своей точкой соответствующего отрезка. Если точек и отрезков достаточно много, то мы можем приближенно наметить ход кривых-решений (три такие кривые показаны на рис. 1). Существует ровно одна кривая-решение, проходящая через каждую точку с y № 0. Каждое отдельное решение называется частным решением дифференциального уравнения; если удается найти формулу, содержащую все частные решения (за исключением, быть может, нескольких особых), то говорят, что получено общее решение. Частное решение представляет собой одну функцию, в то время как общее – целое их семейство. Решить дифференциальное уравнение – это значит найти либо его частное, либо общее решение. В рассматриваемом нами примере общее решение имеет вид y 2 – x 2 = c , где c – любое число; частное решение, проходящее через точку (1,1), имеет вид y = x и получается при c = 0; частное решение, проходящее через точку (2,1), имеет вид y 2 – x 2 = 3. Условие, требующее, чтобы кривая-решение проходила, например, через точку (2,1), называется начальным условием (так как задает начальную точку на кривой-решении).

Можно показать, что в примере (1) общее решение имеет вид x = ce kt , где c – постоянная, которую можно определить, например, указав количество вещества при t = 0. Уравнение из примера (2) – частный случай уравнения из примера (1), соответствующий k = 1/100. Начальное условие x = 10 при t = 0 дает частное решение x = 10e t /100 . Уравнение из примера (4) имеет общее решение T = 70 + ce kt и частное решение 70 + 130 –kt ; чтобы определить значение k , необходимы дополнительные данные.

Дифференциальное уравнение dy /dx = x /y называется уравнением первого порядка, так как содержит первую производную (порядком дифференциального уравнения принято считать порядок входящей в него самой старшей производной). У большинства (хотя и не у всех) возникающих на практике дифференциальных уравнений первого рода через каждую точку проходит только одна кривая-решение.

Существует несколько важных типов дифференциальных уравнений первого порядка, допускающих решения в виде формул, содержащих только элементарные функции – степени, экспоненты, логарифмы, синусы и косинусы и т.д. К числу таких уравнений относятся следующие.

Уравнения с разделяющимися переменными.

Уравнения вида dy /dx = f (x )/g (y ) можно решить, записав его в дифференциалах g (y )dy = f (x )dx и проинтегрировав обе части. В худшем случае решение представимо в виде интегралов от известных функций. Например, в случае уравнения dy /dx = x /y имеем f (x ) = x , g (y ) = y . Записав его в виде ydy = xdx и проинтегрировав, получим y 2 = x 2 + c . К уравнениям с разделяющимися переменными относятся уравнения из примеров (1), (2), (4) (их можно решить описанным выше способом).

Уравнения в полных дифференциалах.

Если дифференциальное уравнение имеет вид dy /dx = M (x ,y )/N (x ,y ), где M и N – две заданные функции, то его можно представить как M (x ,y )dx N (x ,y )dy = 0. Если левая часть является дифференциалом некоторой функции F (x ,y ), то дифференциальное уравнение можно записать в виде dF (x ,y ) = 0, что эквивалентно уравнению F (x ,y ) = const. Таким образом, кривые-решения уравнения – это «линии постоянных уровней» функции, или геометрические места точек, удовлетворяющих уравнениям F (x ,y ) = c . Уравнение ydy = xdx (рис. 1) – с разделяющимися переменными, и оно же – в полных дифференциалах: чтобы убедиться в последнем, запишем его в виде ydy xdx = 0, т.е. d (y 2 – x 2) = 0. Функция F (x ,y ) в этом случае равна (1/2)(y 2 – x 2); некоторые из ее линий постоянного уровня представлены на рис. 1.

Линейные уравнения.

Линейные уравнения – это уравнения «первой степени» – неизвестная функция и ее производные входят в такие уравнения только в первой степени. Таким образом, линейное дифференциальное уравнение первого порядка имеет вид dy /dx + p (x ) = q (x ), где p (x ) и q (x ) – функции, зависящие только от x . Его решение всегда можно записать с помощью интегралов от известных функций. Многие другие типы дифференциальных уравнений первого порядка решаются с помощью специальных приемов.

Уравнения старших порядков.

Многие дифференциальные уравнения, с которыми сталкиваются физики, это уравнения второго порядка (т.е. уравнения, содержащие вторые производные) Таково, например, уравнение простого гармонического движения из примера (3), md 2 x /dt 2 = –kx . Вообще говоря, можно ожидать, что уравнение второго порядка имеет частные решения, удовлетворяющие двум условиям; например, можно потребовать, чтобы кривая-решение проходила через данную точку в данном направлении. В случаях, когда дифференциальное уравнение содержит некоторый параметр (число, величина которого зависит от обстоятельств), решения требуемого типа существуют только при определенных значениях этого параметра. Например, рассмотрим уравнение md 2 x /dt 2 = –kx и потребуем, чтобы y (0) = y (1) = 0. Функция y є 0 заведомо является решением, но если – целое кратное числа p , т.е. k = m 2 n 2 p 2, где n – целое число, а в действительности только в этом случае, существуют другие решения, а именно: y = sin npx . Значения параметра, при которых уравнение имеет особые решения, называются характеристическими или собственными значениями; они играют важную роль во многих задачах.

Уравнение простого гармонического движения служит примером важного класса уравнений, а именно: линейных дифференциальных уравнений с постоянными коэффициентами. Более общий пример (также второго порядка) – уравнение

где a и b – заданные постоянные, f (x ) – заданная функция. Такие уравнения можно решать различными способами, например, с помощью интегрального преобразования Лапласа. То же можно сказать и о линейных уравнениях более высоких порядков с постоянными коэффициентами. Не малую роль играют также и линейные уравнения с переменными коэффициентами.

Нелинейные дифференциальные уравнения.

Уравнения, содержащие неизвестные функции и их производные в степени выше первой или каким-либо более сложным образом, называются нелинейными. В последние годы они привлекают все большее внимание. Дело в том, что физические уравнения обычно линейны лишь в первом приближении; дальнейшее и более точное исследование, как правило, требует использования нелинейных уравнений. Кроме того, многие задачи нелинейны по своей сути. Так как решения нелинейных уравнений зачастую очень сложны и их трудно представить простыми формулами, значительная часть современной теории посвящена качественному анализу их поведения, т.е. разработке методов, позволяющих, не решая уравнения, сказать нечто существенное о характере решений в целом: например, что все они ограниченны, или имеют периодический характер, или определенным образом зависят от коэффициентов.

Приближенные решения дифференциальных уравнений могут быть найдены в численном виде, но для этого требуется много времени. С появлением быстродействующих компьютеров это время сильно сократилось, что открыло новые возможности численного решения многих, ранее не поддававшихся такому решению, задач.

Теоремы существования.

Теоремой существования называется теорема, утверждающая, что при определенных условиях данное дифференциальное уравнение имеет решение. Встречаются дифференциальные уравнения, не имеющие решений или имеющие их больше, чем ожидается. Назначение теоремы существования – убедить нас в том, что у данного уравнения действительно есть решение, а чаще всего заверить, что оно имеет ровно одно решение требуемого типа. Например, уже встречавшееся нам уравнение dy /dx = –2y имеет ровно одно решение, проходящее через каждую точку плоскости (x ,y ), а так как одно такое решение мы уже нашли, то тем самым полностью решили это уравнение. С другой стороны, уравнение (dy /dx ) 2 = 1 – y 2 имеет много решений. Среди них прямые y = 1, y = –1 и кривые y = sin(x + c ). Решение может состоять из нескольких отрезков этих прямых и кривых, переходящих друг в друга в точках касания (рис. 2).

Дифференциальные уравнения в частных производных.

Обыкновенное дифференциальное уравнение – это некоторое утверждение о производной неизвестной функции одной переменной. Дифференциальное уравнение в частных производных содержит функцию двух или более переменных и производные от этой функции по крайней мере по двум различных переменным.

В физике примерами таких уравнений являются уравнение Лапласа

X , y ) внутри круга, если значения u заданы в каждой точке ограничивающей окружности. Поскольку проблемы с более чем одной переменной в физике являются скорее правилом, чем исключением, легко представить, сколь обширен предмет теории дифференциальных уравнений в частных производных.

Дифференциальное уравнение - это уравнение, в которое входят функция и одна или несколько ее производных. В большинстве практических задач функции представляют собой физические величины, производные соответствуют скоростям изменения этих величин, а уравнение определяет связь между ними.


В данной статье рассмотрены методы решения некоторых типов обыкновенных дифференциальных уравнений, решения которых могут быть записаны в виде элементарных функций , то есть полиномиальных, экспоненциальных, логарифмических и тригонометрических, а также обратных им функций. Многие из этих уравнений встречаются в реальной жизни, хотя большинство других дифференциальных уравнений нельзя решить данными методами, и для них ответ записывается в виде специальных функций или степенных рядов, либо находится численными методами.


Для понимания данной статьи необходимо владеть дифференциальным и интегральным исчислением, а также иметь некоторое представление о частных производных. Рекомендуется также знать основы линейной алгебры в применении к дифференциальным уравнениям, особенно к дифференциальным уравнениям второго порядка, хотя для их решения достаточно знания дифференциального и интегрального исчисления.

Предварительные сведения

  • Дифференциальные уравнения имеют обширную классификацию. В настоящей статье рассказывается об обыкновенных дифференциальных уравнениях , то есть об уравнениях, в которые входит функция одной переменной и ее производные. Обыкновенные дифференциальные уравнения намного легче понять и решить, чем дифференциальные уравнения в частных производных , в которые входят функции нескольких переменных. В данной статье не рассматриваются дифференциальные уравнения в частных производных, поскольку методы решения этих уравнений обычно определяются их конкретным видом.
    • Ниже приведены несколько примеров обыкновенных дифференциальных уравнений.
      • d y d x = k y {\displaystyle {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}=ky}
      • d 2 x d t 2 + k x = 0 {\displaystyle {\frac {{\mathrm {d} }^{2}x}{{\mathrm {d} }t^{2}}}+kx=0}
    • Ниже приведены несколько примеров дифференциальных уравнений в частных производных.
      • ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 = 0 {\displaystyle {\frac {\partial ^{2}f}{\partial x^{2}}}+{\frac {\partial ^{2}f}{\partial y^{2}}}=0}
      • ∂ u ∂ t − α ∂ 2 u ∂ x 2 = 0 {\displaystyle {\frac {\partial u}{\partial t}}-\alpha {\frac {\partial ^{2}u}{\partial x^{2}}}=0}
  • Порядок дифференциального уравнения определяется по порядку старшей производной, входящей в данное уравнение. Первое из приведенных выше обыкновенных дифференциальных уравнений имеет первый порядок, в то время как второе относится к уравнениям второго порядка. Степенью дифференциального уравнения называется наивысшая степень, в которую возводится один из членов этого уравнения.
    • Например, приведенное ниже уравнение имеет третий порядок и вторую степень.
      • (d 3 y d x 3) 2 + d y d x = 0 {\displaystyle \left({\frac {{\mathrm {d} }^{3}y}{{\mathrm {d} }x^{3}}}\right)^{2}+{\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}=0}
  • Дифференциальное уравнение является линейным дифференциальным уравнением в том случае, если функция и все ее производные стоят в первой степени. В противном случае уравнение является нелинейным дифференциальным уравнением . Линейные дифференциальные уравнения примечательны тем, что из их решений можно составить линейные комбинации, которые также будут решениями данного уравнения.
    • Ниже приведены несколько примеров линейных дифференциальных уравнений.
      • d y d x + p (x) y = q (x) {\displaystyle {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}+p(x)y=q(x)}
      • x 2 d 2 y d x 2 + a x d y d x + b y = 0 {\displaystyle x^{2}{\frac {{\mathrm {d} }^{2}y}{{\mathrm {d} }x^{2}}}+ax{\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}+by=0}
    • Ниже приведены несколько примеров нелинейных дифференциальных уравнений. Первое уравнение является нелинейным из-за слагаемого с синусом.
      • d 2 θ d t 2 + g l sin ⁡ θ = 0 {\displaystyle {\frac {{\mathrm {d} }^{2}\theta }{{\mathrm {d} }t^{2}}}+{\frac {g}{l}}\sin \theta =0}
      • d 2 x d t 2 + (d x d t) 2 + t x 2 = 0 {\displaystyle {\frac {{\mathrm {d} }^{2}x}{{\mathrm {d} }t^{2}}}+\left({\frac {{\mathrm {d} }x}{{\mathrm {d} }t}}\right)^{2}+tx^{2}=0}
  • Общее решение обыкновенного дифференциального уравнения не является единственным, оно включает в себя произвольные постоянные интегрирования . В большинстве случаев число произвольных постоянных равно порядку уравнения. На практике значения этих констант определяются по заданным начальным условиям , то есть по значениям функции и ее производных при x = 0. {\displaystyle x=0.} Число начальных условий, которые необходимы для нахождения частного решения дифференциального уравнения, в большинстве случаев также равно порядку данного уравнения.
    • Например, в данной статье будет рассмотрено решение приведенного ниже уравнения. Это линейное дифференциальное уравнение второго порядка. Его общее решение содержит две произвольные постоянные. Для нахождения этих постоянных необходимо знать начальные условия при x (0) {\displaystyle x(0)} и x ′ (0) . {\displaystyle x"(0).} Обычно начальные условия задаются в точке x = 0 , {\displaystyle x=0,} , хотя это и не обязательно. В данной статье будет рассмотрено также, как найти частные решения при заданных начальных условиях.
      • d 2 x d t 2 + k 2 x = 0 {\displaystyle {\frac {{\mathrm {d} }^{2}x}{{\mathrm {d} }t^{2}}}+k^{2}x=0}
      • x (t) = c 1 cos ⁡ k x + c 2 sin ⁡ k x {\displaystyle x(t)=c_{1}\cos kx+c_{2}\sin kx}

Шаги

Часть 1

Уравнения первого порядка

При использовании этого сервиса некоторая информация может быть передана YouTube.

Эту страницу просматривали 69 354 раз.

Была ли эта статья полезной?

Найти функцию f по некоторой заданной зависимости, в которую входят сама функция с аргументами и ее производные. Подобный тип задач актуален в физики, химии, экономики, технике и других областях науки. Подобные зависимости носят название дифференциальных уравнений. К примеру, y" - 2xy = 2 - это дифференциальное уравнение 1-го порядка. Посмотрим, как подобные типы уравнений решаются.

Что это?

Уравнение, выглядящее следующим образом:

  • f(y, y", ..., y(10), y(11), ..., y(k), x) = 0,

носит название обыкновенного дифура и характеризуется как уравнение порядка k, и зависит оно от x и производных y", y"", ... - вплоть до k-й.

Разновидности

В случае, когда функция, которую нужно найти, в дифференциальном уравнении зависима только от одного аргумента, тип дифференциального уравнения именуется обыкновенным. Иными словами, в уравнении функция f и все ее производные зависят только от аргумента x.

При зависимости же искомой функции от нескольких разных аргументов уравнения носят название дифференциальных в частных производных. В общем случае они выглядят:

  • f(x, fx", ..., y, fy"..., z, ..., fz"", ...),

где под выражением fx" понимается производная функции по аргументу x, а fz"" - двойная производная функции по аргументу z, и т. д.

Решение

Несложно догадаться, что именно считается решением диф. уравнения. Это функция, подстановка которой в уравнение дает тождественный результат по обе стороны знака равно, называется решением. Например, уравнение t""+a2t = 0 имеет решение в виде t = 3Cos(ax) - Sin(ax):

1 t"= -3aSin(ax) - aCos(ax) 2 t""= -3a2Cos(ax) + a2Sin(ax) 3 t""+a2t= (-3a2Cos(ax) + a2Sin(ax)) + a2(3Cos(ax) - Sin(ax))

Проведя упрощение уравнения 3 мы выясним, что t""+a2t = 0 при всех значения аргумента x. Однако стоит сразу оговориться. Уравнение t = 3Cos(ax) - Sin(ax) является не единственным решением, а лишь одним из бесконечного множества, которое описывается формулой mCos(ax) + nSin(ax), где m и n - это произвольные числа.

Причина такого соотношения заключается в определение первообразной функции в интегральном исчислении: если Q - первообразная (точнее одна из многих) для функции q , то ∫q(x) dx = Q(x) + C, где С - произвольная константа, которая обнуляется при обратной операции - взятии производной функции Q"(x).


Опустим определение того, что такое решение уравнения k-го порядка. Не трудно представить, чем больше порядок производной, тем больше констант возникает в процессе интегрирования. Также следует уточнить, что описанное выше определение для решения не является полным. Но для математиков XVII века оно было достаточным.

Ниже будут рассмотрены лишь основные типы дифференциальных уравнений первого порядка. Самые базовые и простые. Помимо них существуют и другие диф. уравнения: однородные, в полных дифференциалах и Бернулли. Но решение всех часто связано с методом разделяющихся переменных, который будет рассмотрен ниже.

Разделение переменных как способ решения

F = 0 - представляет собой диф. уравнение порядка 1. При решении данного типа дифференциальных уравнений они легко приводятся к виду y" = f. Так, например, уравнение ey" - 1 - xy = 0 приводится к виду y" = ln(1 + xy). Операция приведения дифференциального уравнения к подобному виду называется его разрешением относительно производной y".

После разрешения уравнения нужно привести его к дифференциальному виду. Это делается путем умножения на dx всех частей равенства. Из y" = f получается y"dx = fdx. С учетом того, что y"dx = dy, получим уравнение в виде:

  • dy = f dx - которое называется дифференциальной формой.

Очевидно, y" = f(x) - наиболее простое дифференциальное уравнение первого порядка. Его решение достигается простым интегрированием. Более сложным видом является q(y)*y" = p(x), в котором q(y) - это функция, зависящая от y, а p(x) - функция зависящая от x. Приведя его к дифференциальному виду, получим:

  • q(y)dy = p(x)dx

Легко понять, почему уравнение называется разделенным: его левая часть содержит только переменную y, а правая - только x. Решается такое уравнение с применением следующей теоремы: если у функции p существует первообразная P, а у q - Q, то интеграл дифура будет Q(y) = P(x) + C.


Решим уравнение z"(x)ctg(z) = 1/x. Приведя это уравнение к дифференциальному виду: ctg(z)dz = dx/x; и взяв интеграл от обеих частей ∫ctg(z)dz = ∫dx/x; получим решение в общем виде: C + ln|sin(z)| = ln|x|. Красоты ради данное уравнение по правилам логарифмов может быть записано в иной форме, если положить C = ln W - получим W|sin(z)| = |x| или, еще проще, WSin(z) = x.

Уравнения вида dy/dx = q(y)p(x)

Разделение переменных можно применить на уравнениях вида y" = q(y)p(x). Нужно только учесть случай, когда q(y) при некотором числе а обращается в нуль. То есть q(a) = 0. В таком случае функция y = a будет решением, т. к. для нее y" = 0, следственно, q(a)p(x) также равно нулю. Для всех остальных значений, где q(y) не равно 0, можно записать дифференциальную форму:

  • p(x) dx = dy / q(y),

интегрируя которую, получают общее решение.


Решим уравнение S" = t2(S-a)(S-b). Очевидно, корнями уравнения являются числа a и b. Поэтому S=a и S=b - решения данного уравнения. Для других значений S имеем дифференциальную форму: dS/[(S-a)(S-b)] = t2dt. Откуда легко получить общий интеграл.

Уравнения вида H(y)W(x)y" + M(y)J(x) = 0

Разрешив данный вид уравнение относительно y" получим: y" = - C(x)D(y) / A(x)B(y). Дифференциальная форма данного уравнения будет такова:

  • W(x)H(y)dy + J(x)M(y)dx = 0

Для решения данного уравнения нужно рассмотреть нулевые случаи. Если а - корень W(x), то x = a - интеграл, т. к. из этого следует, что dx = 0. Аналогично, со случаем, если b - корень M(y). Тогда для области значений x, при которых W и M не обращаются в ноль, можно провести разделение переменных путем деления на выражение W(x)M(y). После чего выражение можно интегрировать.


Множество видов уравнений, к которым на первый взгляд невозможно применить разделение переменных, оказываются таковыми. Например, в тригонометрии это достигается за счет тождественных преобразований. Также часто может быть уместной какая-либо остроумная замена, после которой можно будет использовать метод разделенных переменных. Типы дифференциальных уравнений 1 порядка могут выглядеть самым разным образом.

Линейные уравнения

Не менее важный тип дифференциальных уравнений, решение которых происходит путем подстановки и сведения их к методу разделенных переменных.

  • Q(x)y + P(x)y" = R(x) - представляет собой уравнение, линейное при рассмотрении относительно функции и ее производной. P, Q, R - представляют собой непрерывные функции.

Для случаев, когда P(x) не равном 0, можно привести уравнение к разрешенному относительно y" виду, поделив все части на P(x).

  • y" + h(x)y = j(x), в котором h(x) и j(x) представляют собой соотношения функций Q/P и R/P, соответственно.

Решение для линейных уравнений

Линейное уравнение можно назвать однородным в случае, когда j(x) = 0, то есть h(x)y+ y" = 0. Такое уравнение называется однородным и легко разделяется: y"/y = -h(x). Интегрируя его, получаем: ln|y| = -H(x) + ln(C). Откуда y выражается в виде y = Ce-H(x).

Например, z" = zCos(x). Разделяя переменные и приводя уравнение к дифференциальному виду, после чего интегрируя, получим, что общее решение будет иметь выражение y = CeSin(x).

Неоднородным называется линейное уравнение в его общем виде, то есть j(x) не равно 0. Его решение состоит из нескольких этапов. Сначала следует решить однородное уравнение. То есть приравнять j(x) к нулю. Пусть u - одно из решений соответствующего однородного линейного уравнения. Тогда имеет место быть тождество u" + h(x)u = 0.

Проведем в y" + h(x)y = j(x) замену вида y = uv и получим (uv)" + h(x)uv = j(x) или u"v + uv" + h(x)uv = j(x). Приведя уравнение к виду u(u" + h(x)u) + uv" = j(x) можно заметить, что в первой части u" + h(x)u = 0. Откуда получаем v"(x) = j(x) / u(x). Отсюда вычисляем первообразную ∫v = V+С. Проведя обратную замену, находим y = u(V+C), где u - решение однородного уравнения, а V - первообразная соотношения j / u.

Найдем решение для уравнения y"-2xy = 2, которое относится к типу дифференциальных уравнений первого порядка. Для этого сначала решим однородное уравнение u" - 2xu = 0. Получим u = e2x + C. Для простоты решения положим C = 0, т. к. для решения поставленной задачи нам нужно лишь одно из решений, а не всевозможные варианты.

После чего проведем подстановку y = vu и получим v"(x)u + v(u"(x) - 2u(x)x) = 2. Затем: v"(x)e2x = 2, откуда v"(x) = 2e-2x. Тогда первообразная V(x) = -∫e-2xd(-2x) = - e-2x + С. В итоге общее решение для y" - 2xy = 2 будет y = uv = (-1)(e2x + С) e-2x = - 1 - Ce-2x.


Как определить тип дифференциального уравнения? Для этого следует разрешить его относительно производной и посмотреть, можно воспользоваться методом разделения переменных напрямую или подстановкой.