Расчет систем аспирации и газоочистки. Что такое система аспирации воздуха и где она применяется? Расчетный коэффициент по зачистке аспирационных сетей

Введение

Местная вытяжная вентиляция играет наиболее активную роль в комплексе инженерных средств нормализации санитарно-гигиенических условий труда в производственных помещениях. На предприятиях, связанных с переработкой сыпучих материалов, эту роль выполняют аспирационные системы (АС), обеспечивающие локализацию пыли в местах её образования. Общеобменная вентиляция до настоящего времени играла вспомогательную роль – обеспечивала компенсацию воздуха, удаляемого АС. Исследованиями кафедры МОПЭ БелГТАСМ показано, что общеобменная вентиляция является составной частью комплекса систем обеспыливания (аспирация, системы борьбы с вторичным пылеобразованием – гидросмыв или сухая вакуумная пылеуборка, общеобменная вентиляция).

Несмотря на длительную историю развития, аспирация получила фундаментальную научно–техническую основу лишь в последние десятилетия. Этому способствовало развитие вентиляторостроения и совершенствование техники очистки воздуха от пыли. Росла и потребность аспирации со стороны быстро развивающихся отраслей металлургической строительной индустрии. Возник ряд научных школ направленных на решение возникающих экологических проблем. В области аспирации стали известными уральская (Бутиков С.Е. , Гервасьев A.M. , Глушков Л.А. , Камышенко М.Т. , Олифер В.Д. и др.), криворожская (Афанасьев И.И. , Бошняков Е.Н. , Нейков О.Д. , Логачев И.Н. , Минко В.А. , Серенко А.С. , Шелекетин A.В. и американская (Хемеон В. , Принг Р. ) школы, создавшие современные основы конструирования и методики расчета локализаций пылевыделений с помощью аспирации. Разработанные на их основе технические решения в области проектирования систем аспирации закреплены в ряде нормативных и научно–методических материалов .

Настоящие методические материалы обобщают накопленные знания в области проектирования аспирационных систем и систем централизованной вакуумной пылеуборки (ЦПУ). Применение последних расширяется особенно в производстве, где гидросмыв недопустим по технологическим и строительным соображениям. Предназначенные для подготовки инженеров–экологов методические материалы дополняют курс «Промышленная вентиляция» и предусматривают развитие практических навыков у студентов старших курсов специальности 17.05.09. Эти материалы нацелены на то, чтобы студенты умели:

Определить необходимую производительность местных отсосов АС и насадков ЦПУ;

Выбрать рациональные и надёжные системы трубопроводов с минимальными потерями энергии;

Определить необходимую мощность аспирационной установки и выбрать соответствующие тягодутьевые средства

И знали:

Физическую основу расчета производительности местных отсосов АС;

Принципиальное отличие гидравлического расчета систем ЦПУ и сети воздуховодов АС;

Конструктивное оформление укрытий перегрузочных узлов и насадков ЦПУ;

Принципы обеспечения надежности работы АС и ЦПУ;

Принципы подбора вентилятора и особенности его работы на конкретную систему трубопроводов.

Методические указания ориентированы на решение двух практических задач: «Расчет и выбор аспирационного оборудования (практическое задание №1), «Расчет и выбор оборудования вакуумной системы уборки пыли и просыпи (практическое задание №2)».

Апробация этих задач осуществлена в осеннем семестре 1994 года на практических занятиях групп АГ-41 и АГ-42, студентам которых составители выражают признательность за выявленные ими неточности и технические погрешности. Внимательное изучение материалов студентами Титовым В.А., Сероштаном Г.Н., Ереминой Г.В. дали нам основание внести изменения в содержание и редакцию методических указаний.

1. Расчет и выбор аспирационного оборудования

Цель работы: определение необходимой производительности аспирационной установки, обслуживающей систему аспирационных укрытий мест загрузки ленточных конвейеров, выбор системы воздуховодов, пылеуловителя и вентилятора.

Задание включает:

А. Расчет производительности местных отсосов (объемов аспирации).

Б. Расчет дисперсного состава и концентрации пыли в аспирируемом воздухе.

В. Выбор пылеуловителя.

Г. Гидравлический расчет аспирационной системы.

Д. Выбор вентилятора и электродвигателя к нему.

Исходные данные

(Численные значения исходных величин определяются номером варианта N. В скобках указаны значения для варианта N = 25).

1. Расход транспортируемого материала

G м =143,5 – 4,3N, (G м =36 кг/с)

2. Плотность частиц сыпучего материала

2700 + 40N, (=3700 кг/м 3).

3. Исходная влажность материала

4,5 – 0,1 N, (%)

4. Геометрические параметры перегрузочного желоба, (рис 1):


h 1 =0,5+0,02N, ()

h 3 =1–0,02N,

5. Типы укрытий места загрузки ленточного конвейера:

0 – укрытия с одинарными стенками (для четных N),

Д – укрытия с двойными стенками (для нечетных N),

Ширина ленты конвейера B, мм;

1200 (для N=1…5); 1000 (для N= 6…10); 800 (для N= 11…15),

650 (для N = 16…20); 500 (для N= 21…26).

S ж – площадь поперечного сечения желоба.

Рис. 1. Аспирация перегрузочного узла: 1 – верхний конвейер; 2 – верхнее укрытие; 3 – перегрузочный желоб; 4 – нижнее укрытие; 5 – аспирационная воронка; 6 – боковые наружные стенки; 7 – боковые внутренние стенки; 8 – жесткая внутренняя перегородка; 9 – лента конвейера; 10 – торцовые наружные стенки; 11 – торцовая внутренняя стенка; 12 – нижний конвейер


Таблица 1. Геометрические размеры нижнего укрытия, м

Ширина ленты конвейера В, м

Таблица 2. Гранулометрический состав транспортируемого материала

Номер j фракции,

Размер отверстий смежных сит, мм

Средний диаметр фракции d j , мм

* z =100(1 – 0,15 ).

Таблица 3. Длина участков аспирационной сети

Длина участков аспирационной сети

для нечетных N

для четных N

Рис. 2. Аксонометрические схемы аспирационной системы перегрузочных узлов: 1 – перегрузочный узел; 2 – аспирационные патрубки (местные отсосы); 3 – пылеуловитель (циклон); 4 – вентилятор

2. Расчет производительности местных отсосов

В основу расчета необходимого объема воздуха, удаляемого из укрытия, положено уравнение воздушного баланса:

Расход воздуха, поступающего в укрытие через неплотность (Q н; м 3 /с), зависит от площади неплотностей (F н, м 2) и оптимальной величины разрежения в укрытии (Р у, Па):

(2)

где – плотность окружающего воздуха (при t 0 =20 °С; =1,213 кг/м 3).

Для укрытия места загрузки конвейера неплотности сосредоточены в зоне контакта наружных стенок с движущейся лентой конвейера (см. рис. 1):

где: П – периметр укрытия в плане, м; L 0 – длина укрытия, м; b – ширина укрытия, м; – высота условной щели в зоне контакта, м.

Таблица 4. Величина разрежения в укрытии (Р у) и ширина щели ()

Вид транспортируемого материала

Медианный диаметр , мм

Укрытие типа «0»

Укрытие типа «Д»

Кусковый

Зернистый

Порошкообразный

Расход воздуха, поступающего в укрытие по желобу, м 3 /с

(4)

где S – площадь поперечного сечения желоба, м 2 ; – скорость потока перегружаемого материала при выходе из желоба (конечная скорость падения частиц), определяется последовательно расчетом:

а) скорости в начале желоба, м/с (в конце первого участка, см. рис. 1)

, G=9,81 м/с 2 (5)

б) скорости в конце второго участка, м/с

(6)

в) скорости в конце третьего участка, м/с

– коэффициент скольжения компонентов («коэффициент эжекции») u – скорость воздуха в желобе, м/с.

Коэффициент скольжения компонентов зависит от числа Бутакова–Нейкова*

(8)

и критерия Эйлера

(9)

где d – средний диаметр частиц перегружаемого материала, мм,

(10)


(если окажется, что , следует принимать в качестве расчетного среднего диаметра ; – сумма коэффициентов местных сопротивлений (к.м.c.) желоба и укрытий

(11)

ζ вх – к.м.с, входа воздуха в верхнее укрытие, отнесенный к динамическому напору воздуха в конце желоба .

; (12)

F в – площадь неплотностей верхнего укрытия, м 2 ;

* Числа Бутакова–Нейкова и Эйлера являются сутью параметров М и N широко используемых в нормативных и учебно-методических материалах .

– к.м.с. желоба (=1,5 для вертикальных желобов, = 90°; =2,5 при наличии наклонного участка, т.е. 90°) ; –к.м.с. жесткой перегородки (для укрытия типа «Д»; в укрытии типа «0» жесткая перегородка отсутствует, в этом случае пер =0) ;

Таблица 5. Значения для укрытия типа «Д»

Ψ – коэффициент лобового сопротивления частицы

(13)

β – объёмная концентрация частиц в желобе, м 3 /м 3

(14)

– отношение скорости потока частиц в начале желоба к конечной скорости потока.

При найденных числах B u и E u коэффициент скольжения компонентов определяется для равномерно ускоренного потока частиц по формуле:

(15)

Решение уравнения (15)* можно найти методом последовательных приближений, полагая в качестве первого приближения

(16)


Если окажется, что φ 1

, (17)

(18)

(20)

Порядок расчета рассмотрим на примере.

1. На основании заданного гранулометрического состава строим интегральный график распределения частиц по крупности (воспользовавшись предварительно найденной интегральной суммой m i) и находим медианный диаметр (рис. 3) d м = 3,4 мм > 3 мм, т.е. имеем случай перегрузки кускового материала и, следовательно, =0,03 м; P у =7 Па (табл. 4). В соответствии с формулой (10) средний диаметр частиц .

2. По формуле (3) определяем площадь неплотностей нижнего укрытия (имея в виду, что L 0 =1,5 м; b =0,6 м, при В =0,5 м (см. табл. 1)

F н =2 (1,5 + 0,6) 0,03 = 0,126 м 2

3. По формуле (2) определяем расход воздуха, поступающего через неплотности укрытия


Существуют другие формулы для определения коэффициента в т.ч. для потока мелких частиц, на скорости движения которых сказывается сопротивление воздуха .

Рис. 3. Интегральный график распределения частиц по крупности

4. По формулам (5)… (7) находим скорости потока частиц в желобе:

следовательно

n = 4,43 / 5,87 =0,754.

5. По формуле (11) определяем сумму к.м.с. желоба с учетом сопротивления укрытий. При F в =0,2 м 2 по формуле (12) имеем

При h/H = 0,12/0,4 = 0,3,

по табл. 5 находим ζ n ep =6,5;

6. По формуле (14) находим объемную концентрацию частиц в желобе

7. По формуле (13) определяем коэффициент лобового сопротивления
частиц в желобе

8. По формулам (8) и (9) находим соответственно число Бутакова–Нейкова и число Эйлера:

9. Определяем коэффициент «эжекции» в соответствии с формулой (16):

И, следовательно, можно пользоваться формулой (17) с учетом (18)… (20):

10. По формуле (4) определяем расход воздуха, поступающего в нижнее укрытие первого перегрузочного узла:

С целью сокращения вычислений положим для второго, третьего и четвертого перегрузочных узлов расход

К 2 =0,9; к 3 =0,8; к 4 =0,7

Результата вычислений заносим в первую строку табл. 7, полагая, что все перегрузочные узлы оборудованы одним и тем же укрытием, расход воздуха, поступающего через неплотности i – го перегрузочного узла, Q н i = Q н =0,278 м 3 /с. Результат заносим во вторую строку табл. 7, а сумму расходов Q ж i + Q н i – в третью. Сумма расходов , – представляет собой общую производительность аспирационной установки (расход воздуха, поступающего в пылеуловитель – Q n) и заносится в восьмой столбец этой строки.

Расчет дисперсного состава и концентрации пыли в аспирируемом воздухе

Плотность пыли

Расход воздуха, поступающего в убытие по желобу – Q жi (через неплотности для укрытия типа «О» – Q нi = Q H), удаляемого из укрытия – Q ai (см. табл. 7).

Геометрические параметры укрытия (см. рис. 1), м:

длина – L 0 ; ширина – b; высота – Н.

Площадь поперечного сечения, м:

а) аспирационного патрубка F вх = bc.;

б) укрытия между наружными стенками (для убытия типа «О»)

в) укрытия между внутренними стенками (для укрытия типа «Д»)

где b – расстояние между наружными стенками, м; b 1 – расстояние между внутренними стенками, м; Н – высота укрытия, м; с – длина входного сечения аспирационного патрубка, м.

В нашем случае, при В = 500 мм, для укрытия с двойными стенками (укрытие типа «Д») b =0,6 м; b 1 =0,4 м; С =0,25 м; H =0,4 м;

F вx =0,25 0,6 =0,15 м 2 ; F 1 =0,4 0,4 =0,16 м 2 .

Удаление аспирационной воронки от желоба: а) для укрытия типа «0» L у =L; б) для укрытия типа «Д» L у = L –0,2. В нашем случае L у =0,6 – 0,2 =0,4 м.

Средняя скорость воздуха внутри укрытия, м/с:

а) для укрытия типа «Д»

б) для укрытия типа «0»

=(Q ж +0,5Q H)/F 2 . (22)

Скорость входа воздуха в аспирационную воронку, м/с:

Q а /F вх (23)

Диаметр наиболее крупной частицы в аспирируемом воздухе, мкм:

(24)

По формуле (21) или по формуле (22) определяем скорость воздуха в укрытии и результат заносим в строку 4 табл. 7.

По формуле (23) определяем скорость входа воздуха в аспирационную воронку и результат заносим в строку 5 табл. 7.

По формуле (24) определяем заносим результат в строку 6 табл. 7.

Таблица 6. Массовое содержание частиц пыли, зависящее от

Номер фракции j

Размер фракции, мкм

Массовая доля частиц j-й фракции (, %) при , мкм

Значения соответствующие расчетной величине (или ближайшему значению) выписываем из столбца таблицы 6 и результаты (в долях) заносим в строки 11…16 столбцов 4…7 табл. 7. Можно использовать и линейную интерполяцию значений таблицы, но следует иметь в виду, что в результате получим, как правило, и потому нужно скорректировать максимальное значение (чтобы обеспечить ).

Определение концентрации пыли

Расход материала – , кг/с (36),

Плотность частиц материала – , кг/м 3 (3700).

Исходная влажность материала –, % (2).

Процентное содержание в перегружаемом материале частиц мельче – , % (при =149…137 мкм, =2 + 1,5=3,5%. Расход пыли, перегружаемой с материалом – , г/с (103,536=1260).

Объемы аспирации – , м 3 /с (). Скорость входа в аспирационную воронку – , м/с ().

Максимальная концентрация пыли в воздухе, удаляемом местным отсосом из i-го укрытия (, г/м 3),

, (25)

Фактическая концентрация пыли в аспирируемом воздухе


где – поправочный коэффициент, определяемый по формуле

в которой

для укрытий типа «Д», для укрытий типа «О»; в нашем случае (при кг/м 3)

Или при W=W 0 =2%

1. В соответствии с формулой (25) вычисляем .и заносим результаты в 7 строку сводной табл. 7 (заданный расход пыли делим на соответствующее числовое значение строки 3, а результаты заносим в 7 строку; для удобства в примечании, т.е. в столбце 8, проставляем значение ).

2. В соответствии с формулами (27…29) при установленной влажности строим расчетное соотношение типа (30) для определения поправочного коэффициента , значения которого заносим в строку 8 сводной табл. 7.

Пример. По формуле (27) найдем поправочный коэффициент пси и м/с:

Если запыленность воздуха окажется значительной (> 6 г/м 3), необходимо предусмотреть инженерные способы по уменьшению концентрации пыли, например: гидроорошение перегружаемого материала, уменьшение скорости входа воздуха в аспирационную воронку, устройство осадительных элементов в укрытии или применение местных отсосов – сепараторов . Если путем гидроорошения удается увеличить влажность до 6% то будем иметь:

(31)

При =3,007, , =2,931 г./м 3 и в качестве расчетного соотношения для используем соотношение (31).

3. По формуле (26) определяем фактическую концентрацию пыли в I-м местном отсосе и результат заносим в строку 9 табл. 7 (значения строки 7 умножаются на соответствующие i-му отсосу – значения строки 8).

Определение концентрации и дисперсного состава пыли перед пылеуловителем

Для выбора пылеулавливающей установки аспирационной системы, обслуживающей все местные отсосы, необходимо найти усредненные параметры воздуха перед пылеуловителем. Для их определения используются очевидные балансовые соотношения законов сохранения массы, транспортируемой по воздуховодам пыли (полагая, что осаждение пыли на стенках воздуховодов пренебрежимо мало):

Для концентрации пыли в воздухе, поступающем в пылеуловитель, имеем очевидное соотношение:

Имея в виду, что расход пыли j-и фракции в i – м местном отсосе

Очевидно, что

(36)

1. Перемножая в соответствии с формулой (32) значения строки 9 и строки 3 табл. 7, находим расход пыли в i – м отсосе, а его значения заносим в строку 10. Сумму этих расходов проставим в столбце 8.

Рис. 4. Распределение частиц пыли по крупности перед входом в пылеуловитель

Таблица 7. Результаты расчетов объемов аспирируемого воздуха, дисперсного состава и концентрации пыли в местных отсосах и перед пылеуловителем

Условные обозначения

Размерность

Для i-го отсоса

Примечание

Г/с при W=6%

2. Умножая значения строки 10 на соответствующие значения строк 11…16, получим в соответствии с формулой (34) величину расхода пыли j-ой фракции в i-м местном отсосе. Значения этих величин заносим на строках 17…22. Построчная сумма этих величин, проставляемая в столбце 8, представляет расход j-ой фракции перед пылеуловителем, а отношение этих сумм к общему расходу пыли в соответствии с формулой (35) является массовой долей j-ой фракции пыли, поступающей в пылеуловитель. Значения проставляются в столбце 8 табл. 7.

3. На основании вычисленных в результате построения интегрального графика распределения пылевых частиц по крупности (рис. 4) находим размер пылевых частиц, мельче которых в исходной пыли содержится 15,9% от общей массы частиц (мкм), медианный диаметр (мкм) и дисперсию распределения частиц по крупности: .

Наиболее широкое распространение при очистке аспирационных выбросов от пыли получили инерционные сухие пылеуловители – циклоны типа ЦН; инерционные мокрые пылеуловители – циклоны – пробыватели СИОТ, коагуляционные мокрые пылеуловители КМП и КЦМП, ротоклоны; контактные фильтры – рукавные и зернистые.

Для перегрузок ненагретых сухих сыпучих материалов применяются как правило циклоны НИОГАЗ при концентрации пыли до 3 г/м 3 и мкм либо рукавные фильтры при больших концентрациях пыли и меньшей её крупности. На предприятиях с замкнутыми циклами водоснабжения используются инерционные мокрые пылеуловители.

Расход очищаемого воздуха – , м 3 /с (1,7),

Концентрация пыли в воздухе перед пылеуловителем – , г/м 3 (2,68).

Дисперсний состав пыли в воздухе перед пылеуловителем – (см. табл. 7).

Медианный диаметр пылевых частиц – , мкм (35,0).

Дисперсия распределения частиц по крупности – (0,64),

Плотность пылевых частиц – , кг/м 3 (3700).

При выборе в качестве пылеуловителя циклонов типа ЦН используются следующие параметры (табл. 8).

аспирационный конвейер воздуховод гидравлический

Таблица 8. Гидравлическое сопротивление и эффективность циклонов

Параметр

Мкм – диаметр частиц, улавливаемых на 50% в циклоне с диаметром м при скорости воздуха , динамической вязкости воздуха Па с и плотности частиц кг/м 3

М/с – оптимальная скорость воздуха в поперечном сечении циклона

Дисперсия парциальных коэффициентов очистки –

Коэффициент местных сопротивлений циклона, отнесенный к динамическому напору воздуха в поперечном сечении циклона, ζ ц:

для одного циклона

для группы из 2-х циклонов

для группы из 4-х циклонов

Допустимая концентрация пыли в воздухе, выбрасывании в атмосферу, г/м 3

При м 3 /c (37)

При м 3 /c (38)

Где коэффициент, учитывающий фиброгенную активность пыли, определяется в зависимости от величины предельно допустимой концентрации (ПДК) пыли в воздухе рабочей зоны:

ПДК мг/ м 3

Требуемая степень очистки воздуха от пыли, %

(39)

Расчетная степень очистки воздуха от пыли, %


где – степень очистки воздуха от пыли j-й фракции, % (пофракционная эффективность – принимается по справочным данным ).

Дисперсный состав многих промышленных пыли (при 1< <60 мкм) как и пофракционная степень их очистки и инерционных пылеуловителю подчиняется логарифмически нормальному закону распределения, и общая степень очистки определяется по формуле :

, (41)

в которой

, (42)

где – диаметр частиц, улавливаемых на 50% в циклоне диаметром Д ц при средней скорости воздуха в его поперечном сечении ,

, (43)

– динамический коэффициент вязкости воздуха (при t=20 °С, =18,09–10–6 Па–с).

Интеграл (41) не разрешается в квадратурах, и его значения определяются численными методами. В табл. 9 приведены значения функции найденные этими методами и заимствованные из монографии .

Нетрудно установить, что

, , (44)

, (45)

это интеграл вероятности, табличные значения которого приведены во многих математических справочниках (см., напр., ).

Порядок расчета рассмотрим на конкретном гримере.

1. Допустимая концентрация пыли в воздухе после его очистки в соответствии с формулой (37) при ПДК в рабочей зоне 10 мг/м 3 ()

2. Требуемая степень очистки воздуха от пыли по формуле (39) составляет

Такая эффективность очистки для наших условий ( мкм и кг/м 3) может быть обеспечена группой из 4-х циклонов ЦН-11

3. Определим необходимую площадь поперечного сечения одного циклона:

м 2

4. Определяем расчетный диаметр циклона:

м

Выбираем ближайший из нормированного ряда диаметров циклонов (300, 400, 500, 600, 800, 900, 1000 мм), а именно м.

5. Определяем скорость воздуха в циклоне:

м/c

6. По формуле (43) определим диаметр частиц, улавливаемых в этом циклоне на 50%:

мкм

7. По формуле (42) определяем параметр X:

.

Полученный результат, основанной на методике НИОГАЗ, предполагает логарифмически нормальный закон распределения пылевых частиц по крупности. Фактически дисперсный состав пыли, в области крупных частиц (> 60 мкм), в аспирируемом воздухе для укрытий мест загрузки конвейеров отличается от нормально–логарифмического закона. Поэтому расчетную степень очистки рекомендуется сопоставить с расчетами по формуле (40) либо с методикой кафедры МОПЭ (для циклонов), основанной на дискретном подходе к достаточно полно освещенной в курсе «Механика аэрозолей».

Альтернативный путь определения достоверной величины общей степени очистки воздуха в пылеуловителях заключается в постановке специальных экспериментальных исследований и сравнении их с расчетными, что мы рекомендуем для углубленного изучения процесса очистки воздуха от твердых частиц.

9. Концентрация пыли в воздухе после очистки составляет

г/м 3 ,

т.е. меньше допустимой.

Требования к охране труда и экологическому состоянию окружающей среды вокруг действующих предприятий постоянно возрастают. Совершенствуются и системы очистки. В этой статье кратко рассмотрен процесс аспирации, виды систем и принцип работы.

Система аспирации – это вид фильтрации и очищения воздуха, применяемый в производственных цехах с технологическими процессами повышенной загрязнённости.

В первую очередь – это металлургические, горнодобывающие, лакокрасочные, мебельные, химические и другие вредные производства. Главное отличие аспирации от вентиляции воздуха заключается в том, что загрязнения собираются непосредственно на рабочем месте, глобальное распространение по объёму цеха не допускается.

Типичная конструкция системы аспирации

Схематично конструкция системы аспирации включает:

  1. Вентилятор, который создаёт воздушный поток и всасывает воздух. Используется установки типа «циклон», внутри которых создается центробежная сила. Она притягивает крупные частицы загрязнений к стенкам корпуса устройства. Таким образом производится первичная грубая очистка.
  2. Уловители стружки для сбора крупных отходов.
  3. Фильтрующие элементы различной конструкции, устанавливаемые для очистки воздуха от мельчайших загрязнений. Наиболее производительные установки состоят из нескольких типов фильтров как первичной, так и последующей тонкой очистки. Они улавливают и отделяют 99% всех частиц больше 1 мкн.
  4. Улавливающие устройства и контейнеры, в которых складируются загрязнения.
  5. Связующие воздуховоды и трубы, которые устанавливаются под наклоном для предотвращения забивания твёрдыми загрязнениями.

Отходы разных типов производств различаются по своим физико-химическим свойствам, плотности и массе. Поэтому для каждого предприятия система аспирации разрабатывается индивидуально и включает необходимые элементы. Только при таком подходе вы получите эффективную очистку воздуха.

Типы аспирационных установок

Всё многообразие систем аспирации принято классифицировать по нескольким признакам:

По степени мобильности


По способу вывода отфильтрованного потока воздуха

  • Прямоточные. После очистки выводят воздух за пределы помещения. Такие системы более эффективные и экологичные.
  • Рециркуляционные. Выбрасывают очищенные и тёплые воздушные массы в цех. Главные преимущества таких систем: снижение затрат на нагрев и увлажнение воздуха, меньшая нагрузка на общую принудительную вентиляцию цеха.

Расчёт оборудования для системы аспирации

Правильный расчёт параметров оборудования – основной залог эффективной работы аспирационной установки. Расчёты сложные, так как необходимо учесть множество факторов для каждого отдельно взятого предприятия. Поэтому выполнять такую работу должны только высококвалифицированные специалисты-инженеры. Основные факторы, которые необходимо учитывать при составлении проекта системы аспирации:

  • скорость движения воздуха в системе, которая зависит от материала воздуховода;
  • площадь и объём помещения;
  • влажность и температура воздуха;
  • характер и интенсивность загрязнений;
  • продолжительность рабочей смены.

На основе полученных данных определяется и рассчитываются основные параметры системы:

  • пропускная способность каждого отдельного устройства;
  • необходимый тип фильтров, их производительность;
  • диаметр трубы воздуховода, при этом для каждого производственного участка он может быть разным;
  • проектируются точки и расположение воздуховода.

Особенности монтажа и обслуживания

Для монтажа аспирационной установки не требуется менять компоновку основного оборудования или последовательность технологического процесса. Правильно спроектированные под заказ аспирационные системы учитывают все особенности производства и интегрируются в уже существующую систему.

Эффективность и скорость аспирации установки значительно снижают негерметичные соединения. Поэтому важно не только установить систему, но и регулярно проводить техосмотры и мероприятия, направленные на предупреждение разрывов соединений, вовремя устранять выявленные дефекты. Это повысит производительность установки и снизит энергозатраты при её работе.

Экономить на проектировании и внедрении аспирационных комплексов не стоит. Сомнительное оборудование или неправильно рассчитанная установка может привести не только к повышению заболеваемости среди рабочих и снижению производительности труда, но и к закрытию предприятия.

Монтаж системы аспирации – это обязательная и необходимая техническая процедура на любом современном предприятии. Кроме того – это часть культуры производства. Промышленная аспирация не только улучшает микроклимат в производственном помещении, но и предотвращает загрязнение окружающей среды за стенами завода или фабрики.

Рассмотрим принципиальные аспирационные транспортно–технологические системы предприятий стройиндустрии. Состав оборудования линии приемки сыпучего сырья включает бункер, конвейер, норию, конвейер. Пылевоздушные потоки образуются в основном на следующих участках: бункер – конвейер, конвейер – нория, нория - самотечном трубопроводе на участе нория - цепной конвейер. Соответственно этому в укрытиях образуются зоны повышенного и пониженного давления воздуха.

На Рис. 2.3 показана схема подключения к аспирационной системе оборудования участка приема супучего сырья.

Отсос воздуха можно осуществлять двумя способами: первый – подключить к аспирационной сети все места повышенного давления: бункер, конвейер, норию, цепной конвейер; второй - подключить к аспирационной сети бункер, башмак и головку нории, конвейер. При втором способе протяженность воздуховодов существенно уменьшается, а количество пыли, увлекаемой аспирационным воздуховодом, снижается, что обуславливает предпочтительность вторго способа.

Для нашего примера площадь живого селения решетки над приемным бункером дожна бать минимальной. Открытыми должны бать только те участки через которые сыпучий материал из транспортних средств поступает в приемный бункер. Для уменьшения площади контакта падающего потока материала с воздухом и уменьшением объема эжектируемого воздуха следует применять откидные уплотнительные щиты.

Рис.2.3 Схема подключения к аспирационной системе оборудования участка разгрузки железнонодрожного вагона: 1- железнонодрожный вагон; 2 - бункер; 3 – конвейер; 4 – нория; 5 - цепной конвейер; 6 - аспирационная сеть; 7- уплотнительные щиты.

Объем аспирируемого воздуха из приемного бункера определяют по формуле баланса прихода и расхода воздуха

При максимальном массовом расходе материала 100т/ч и высоте падения 2м см. Табл. 2.1 Lэ = 160 м³/ч; vн - скорость воздуха в отверствиях, 0.2м/с; Fн–площадь неплотностей приемного бункера, 3м²; Gм – объемная масса материала, 46м³; t – время разгрузки, 180с; получим:

Lа бун = 160 + ((0,2 * 3)*3600) + ((46 / 180)*3600) = 3240 м³/ч

Значения объемов аспирируемого воздуха из нории НЦ-100 (рабочая и холостая трубы) и цепногно конвейера ТСЦ-100 получены из нормативной документации :

Lа нор. раб.= 450 м³/ч; Lа нор. хол.= 450 м³/ч; Lа цеп = 420 м³/ч;

Для всей аспирационной системы:

Lа = 3240 + 450 + 450 + 420 = 4560 м³/ч;

Величина давления в аспирационном патрубке приемного бункера с учетом ежекционного давления создаваемого сыпучим материалом при высоте падения 2м и насыпном лотке составляет:

На бун = 50 + 50 = 100Па

Давление в каждом из аспирационных патрубков нории с учетом ежекционного давления в сбрасывающей коробке конвейера составляет:

На нор = 30 + 50 = 80Па

Давление в аспирационного патрубка цепного конвейера с учетом ежекционного давления в наклонном самотеке до 2м и разряжении в бункере составляет:

На цеп = 50 + 50 + 30 = 130Па

Получив исходные данные и скомпоновав аспирационную систему выполним аэродинамический расчет системы производительностью

Lа = 4560 м³/ч; см. рис. 2.3, которую отображаем на плане цеха в такой последовательности:

1. Производится нанесение воздуховодов и других элементов системы аспирации на план помещения, с последующим конструированием пространственной (аксонометрической) схемы аспирации.

2. Выбирается магистральное направление движения воздуха. Магистральным считается наиболее протяженное или нагруженное направление от вентилятора до начальной точки первого участка системы.

3. Разбивается система на участки с постоянным расходом воздуха, участки нумеруются, начиная с наиболее отдалённого от вентилятора, вначале по магистрали, а затем по ответвлениям. Определяют длину участков и расход воздуха и вносят эти значения в таблицу 2.3 графы 1, 2, 3.

4. Предварительно задаёмся ориентировочной скоростью воздуха v ор, м/с, на участке 1 воздуховода (в зависимости от скорости движения воздуха для заданной пыли см. табл. 2.4). Исходя из планировочных требований принимаем форму воздуховода и материал, из которого он изготовлен (круглый, из оцинкованной стали). Потери давления в цепном конвейере, присоединенного к участку 1, заносим в табл. 2.3 первой строкой. Для определения потерь давления в участке 1 соединяем прямой линией по номограмме рис. 2.5 точки Lцеп=420 м³/ч и v =10,5 м/с на пересечении этой прямой со шкалой D находим ближайший меньший рекомендуемый диаметр D=125 мм, величины v =10,5 м/с, Hд =67 Па, λ/D=0,18 заносим в графы 3, 6, 8.

5. Производим суммирование коэффициентов местных сопротивлений на участке (тройники, отводы. и т.д.) выбранных по . Полученный результат Σ ζ записываем в графу 5.

6. Производим умножение, (1 * λ/D) заполняем графу 9, сложение (1 * λ/D + Σ ζ) заполняем графу 10 . Графу 11 (общие потери на участке) находим как произведение величин, записанных в графах 6 и 10. В графу 12 записываем сумму общих потерь на 1 участке и потерь давления в в цепном конвейере.

Аналогично проводим расчеты остальных магистральных участков.

7. По окончании расчётов суммируем полученные величины и получаем суммарные потери давления в сети, которые служат критерием для подбора вентилятора.

8. Рассчитав потери давления по магистрали, приступаем к расчёту потерь давления на ответвлениях. При расчёте которых необходимо осуществить увязку, расхождение допускается не более 10 % .

9. Увеличивать потери давления в ответвлениях можно двумя способами. Первый способ – установка в ответвлении дополнительного местного сопротивления (задвижки, диафрагмы, шайбы). Второй способ – уменьшение диаметра ответвления.

В рассматриваемом примере следует повысить сопротивление 7-го участка на величину Нс = 237- 186,7 = 50,3 Па, а 8-го на – Нс = 373 - 187,7 =185,3 Па, а 9-го на – Нс = 460 - 157,8 = 302,2 Па. На 7 и 8 участках это можно осуществить установив дополнительно местные сопротивления т.к. диаметр трубы уже 125 мм. Величину коэффициента сопротивления диафрагмы, установленной на участке 7 определяем по выражению:

ζд7 = Нс / Нд7 = 50,3 / 74,1 = 0,68 (2.10)

По этой величине на рис. 2.4 определяем глубину погружения диафрагмы в воздуховод к его диаметру – а / D = 0,36, при D =125 мм а = 43.75мм. Аналогично для участков 8 и 9: ζд8 = Нс / Нд8 = 185,3 / 74,1 = 2,5 по рис. 5.3 определяем - а / D = 0,53, при D =125 мм а = 66,3мм; ζд9 = Нс / Нд9 = 302,2 74,1 = 4.1 по рис. 2.3 определяем - а / D = 0,59, при D =315 мм а = 186мм;

Рис. 2.4 Односторонняя диафрагма (а) и сдвоенная шкала для расчета размеров (б)

Рис.2.5 Номограмма А.В.Панченко для расчета воздуховодов.

Таблица 2.3

Аэродинамический расчет воздуховодов.

Магистральные участки

Номер участка и наим. машин L м³/с v м/с l , м Σ ζ Hд, Па D, мм λ/D l * λ/D l * λ/D+Σζ Прир. пол-ного давле-ния уч-ка, Па Пол-ное давле-ние участка, Па
Цепной конв. 0,12 - - - - - - - -
Уч-к 1 0,12 10,5 0,7 0,18 0,9 1,6
Уч-к 2 0,242 10,5 0,3 0,12 0,36 0,69
Уч-к 3 0,37 0,6 74,1 0,09 0,63 1,18 87,4 460,4
Уч-к 4 1,27 11,8 0,1 88,2 0,04 0,31 0.4 34,8 495,2
Уч-к 5 1,27 11,8 0,6 88,5 0,04 0,36 0.57 50,5 545,6
Нагнетающий Уч-к 6 1,27 11,8 88,5 0,04 0,31 1,32 116,4 116,4
ответвления
Нория 0,125 - - - - - - - -
Участок 7 0,125 0,23 74,1 0,17 1,21 1,44 106,7 186,7
Нория 0,125 - - - - - - - -
Участок 8 0,125 0,2 74,1 0,17 1,25 1,45 107,7 187,7
Приёмный бункер 0,9 - - - - - - - -
Участок 9 0,9 0,18 74,1 0,06 0,6 0,78 557,8 157,8

Таблица 2.4 Значения величин для проектирования систем аспирации и пневмотранспорта

Транспортируемый материал ϒ, кг/м 3 Скорость движения воздуха в воздуховодах v, м/с Максимальная массовая концентрация смеси μ кг/кг Опытный коэфициент К
вертикальных горизонтальных
Земляная и песочная пыль, оборотная (горелая) земля, формовочная земля 0,8 0,7
Земля и песок влажные
Глина молотая 0,8 0,6
Шамот 0,8 0,6
Пыль мелкая минеральная
Пыль от матерчатых полировальных кругов
Пыль угольная 900‒1000
Пыль наждачная минеральная 15,5
Гипс, тонкомолотая известь
Шерсть:
замасленная
незамасленная
искусственная
мериносовая (замасленная и незамасленная) 0,1‒0,2
лоскут
разрыхленная и крупные очёсы
Лён:
короткое волокно
льняная костра
Снопы тресты 0,5
Хлопок-сырец, разрыхленный хлопок, крупные очесы хлопка 0,5
Опилки:
чугунные 0,8 0,85
стальные 0,8
Шлак угля с размером частиц 10‒15 мм 0,5

Для расчета аспирационной установки необходимо знать месторасположение аспирируемого оборудования, вентиляторов, пылеуловителей и расположение трассы воздуховодов.

Из чертежей общего вида установки составляем без масштаба аксонометрическую схему сети и заносим на эту схему все данные для расчета. Разбиваем сеть на участки и определяем главную магистраль и боковые параллельные участки сети.

Главная магистраль состоит из 7 участков: АБ-БВ-ВГ-ГД-ДЕ-ЕЖ-ЖЗ; и имеет 4 боковых: аБ, бВ, вг, дг и гГ.

Результаты расчета сводятся в таблицу А.1 (Приложение1).

Участок АБ

Участок состоит из конфузора, прямого вертикального участка длиной 3800 мм, отвода на 30о, прямого горизонтального участка длиной 2590 мм.

Скорость воздуха на участке АБ принимаем 12 м/с.

Расход-240 м3/ч.

Принимаем стандартный диаметр D=80 мм . Площадь поперечного сечения воздуховода, выбранного диаметра, 0,005 м2. Уточняем скорость по формуле:

где S- площадь поперечного сечения воздуховода, м2.

Потери давления по длине воздуховода определяем по формуле:

где R - потери давления на одном метре длины воздуховода, Па/м.

Расчетная длина участка, м.

По диаметру D и скорости v, по номограмме , находим потери давления на одном метре длины воздуховода и динамическое давление: R=31,4 Па/м, Нд=107,8 Па

Определяем размеры входного отверстия конфузора, исходя из площади входного отверстия по формуле:

Где v вх- скорость на входе в конфузор, для мукомольной пыли примем 0,8 м/с .

Длину конфузора (отсасывающего патрубка) находим по формуле :

где b- наибольший размер конфузора на аспирируемой машине,

d-диаметр воздуховода,

б- угол сужения конфузора.

Коэффициент сопротивления конфузора определяется из табл. 8 в зависимости от lк/D>1 иб=30о-тк=0,11.

Радиус отвода находим по формуле :

где n- отношение радиуса отвода к диаметру, принимаем 2;

D-диаметр воздуховода.

Ro=2·80=160 мм

Длину отвода вычисляем по формуле :

Длина отвода на 30о:

Расчетная длина участка АБ:

LАБ=lk+l3о+Уlпр

LАБ=690+3800+2590+84=7164 мм

Потери давления на участке АБ находим по формуле 12:

RlАБ=31,4·7,164=225 Па

Участок аБ

Участок аБ состоит из конфузора, прямого вертикального участка длиной 4700 мм, прямого горизонтального участка длиной 2190 мм и бокового участка тройника.

Скорость воздуха на участке аБ принимаем 12 м/с.

Расход -360 м3/ч.

Определяем требуемый диаметр по формуле 8:

Принимаем стандартный диаметр D=100 мм . Площадь поперечного сечения воздуховода, выбранного диаметра, 0,007854 м2. Уточняем скорость по формуле (10):

По диаметру D и скорости v, по номограмме , находим R = 23,2 Па/м, Нд=99,3 Па.

Примем одну из сторон конфузораb=420 мм.

Коэффициент сопротивления конфузора определяется из табл. 8 в зависимости от lк/D>1 и б=30о-тк=0,11.

Ro=2·100=200 мм

Коэффициент сопротивления отвода на 30о находим из таблицы 10 .

Длина отвода на 30о

Расчетная длина участка аБ:

LаБ=lk+2·l9o+ Уlпр

LаБ=600+4700+2190+105=7595 мм.

Потери давления на участке аБ находим по формуле 12:

RlаБ=23,2·7,595=176 Па

Коэффициенты сопротивления тройника находим, задавшись диаметром объединенного воздуховода D=125 мм, S=0,01227 м2.

Отношение площадей и расходов определяем по формуле:

гдеSп- площадь проходного воздуховода, м2;

Sб- площадь бокового воздуховода, м2;

S-площадь воздуховода объединенных потоков, м2;

Lб- расход бокового воздуховода, м3/ч;

L-расход воздуховода объединенных потоков, м3/ч.

Отношение площадей и расходов определяем по формулам (18):

Коэффициент сопротивления тройника определяем из таблицы 13 : проходного участка жпр=0,0 и бокового участка жбок=0,2.

Hпт=Rl+УтHд

Потери давления на участке АБ составляют:

Нпт.п=225+(0,069+0,11+0,0)107,7=244 Па

Потери давления на участке аБ составляют:

Нпт.б=176+(0,069+0,11+0,2)99,3=214 Па

УНпт.п=Нпт.п+Нм.п.=244+50=294 Па,

где Нм.п.=50,0 Па - потери давления в бункере из табл. 1.

УНпт.б=Нпт.б+Нм.б.=214+50,0=264 Па,

где Нб.п.=50,0 Па - потери давления в бурате из табл. 1.

Разница давлений между участками АБ и аБ:

Ндиаф=294-264=30 Па

Так как разница составляет 10 %, значит нет необходимости выравнивать потери в тройнике.

Участок БВ

Участок состоит из прямого горизонтального участка длиной 2190 мм, проходного участка тройника.

Расход-600м3/ч.

Диаметр воздуховода на участке БВ -125 мм.

По диаметру D и скорости v по номограмме , находим R=20 Па/м, Нд=113 Па.

Расчетная длина участка БВ:

RlБВ=20,0·2,190=44 Па

Участок бВ

Участок бВ состоит из конфузора, прямого вертикального участка длиной 5600 мм и бокового участка тройника.

Скорость воздуха на участке бВ принимаем 12 м/с.

Расход -1240 м3/ч.

Определяем требуемый диаметр по формуле 8:

Принимаем стандартный диаметр D=180 мм . Площадь поперечного сечения воздуховода, выбранного диаметра, 0,02545 м2. Уточняем скорость по формуле (10):

По диаметру D и скорости v, по номограмме , находим R = 12,2 Па/м, Нд=112,2 Па.

Определяем размеры входного отверстия конфузора, исходя из площади входного отверстия по формуле 13:

Примем одну из сторон конфузора b=300 мм.

Длину конфузора (отсасывающего патрубка) находим по формуле 15:

Коэффициент сопротивления конфузора определяется из табл. 8 в зависимости от lк/D>1 и б=30о-тк=0,11.

Радиус отвода находим по формуле 15

Ro=2·180=360 мм

Коэффициент сопротивления отвода на 30о находим из таблицы 10 .

Длину отвода вычисляем по формуле 16.

Длина отвода на 30о

Расчетная длина участка бВ:

LаБ=lk+l30o+ Уlпр

LбВ=220+188+5600=6008 мм.

Потери давления на участке бВ находим по формуле 12:

RlБВ=12,2·6,008=73 Па.

Коэффициенты сопротивления тройника находим, задавшись диаметром объединенного воздуховода D=225 мм, S=0,03976 м2.

Коэффициент сопротивления тройника определяем из таблицы 13 : проходного участка жпр=-0,2 и бокового участка жбок=0,2.

Потери давления на участке рассчитывают по формуле:

Hпт=Rl+УтHд

Потери давления на участке БВ составляют:

Нпт.п=43,8-0,2113=21,2 Па

Потери давления на участке бВ составляют:

Нпт.б=73+(0,2+0,11+0,069)112,0=115 Па

Сумарные потери на проходном участке БВ:

УНпт.п=Нпт.п+Нм.п.=21,2+294=360 Па,

Суммарные потери на боковом участке:

УНпт.б=Нпт.б+Нм.б.=115+80,0=195 Па,

где Нб.п.=80,0 Па - потери давления в колонке аспирационной из табл.1.

Разница давлений между участками БВ и бВ:

Так как разница составляет 46%, что превышает допустимые10%, то необходимо выравнивание потерь давлений в тройнике.

Выполним выравнивание с помощью дополнительного сопротивления в виде боковой диафрагмы.

Коэффициент сопротивления диафрагмы находим по формуле:

По номограмме определяем значение 46 . Откуда заглубление диафрагмы а=0,46·0,180=0,0828 м.

Участок ВГ

Участок ВГ состоит из прямого горизонтального участка длиной 800 мм, прямого вертикального участка длиной 9800 мм отвода на 90о и бокового участка тройника.

Скорость воздуха на участке ВГ принимаем 12 м/с.

Расход-1840 м3/ч.

Принимаем стандартный диаметр D=225 мм. Площадь поперечного сечения воздуховода, выбранного диаметра, 0,03976 м2. Уточняем скорость по формуле (10):

По диаметру D и скорости v, по номограмме , находим R= 8,0 Па/м, Нд=101,2 Па.

Радиус отвода находим по формуле 15

Ro=2·225=450 мм

Коэффициент сопротивления отвода на 90о находим из таблицы 10 .

Длину отвода вычисляем по формуле 16.

Длина отвода на 90о

Расчетная длина участка ВГ:

LВГ=2·l9o +Уlпр

LВГ=800+9800+707=11307 мм.

RlВГ=8,0·11,307=90 Па

Участок вг

Участок вг состоит из конфузора, отвода на 30о,вертикального участка длиной 880 мм, горизонтального участка 3360 мм и проходного участка тройника.

Расход-480 м3/ч.

Определяем размеры входного отверстия конфузора, исходя из площади входного отверстия по формуле 13:

Коэффициент сопротивления конфузора определяется из табл. 8 в зависимости от lк/D>1 и б=30о-тк=0,11.

Ro=2·110=220 мм

Коэффициент сопротивления отвода на 30о находим из табл. 10 .

Длину отвода вычисляем по формуле 16.

Длина отвода на 30о

Расчетная длина участка вг:

Lвг=lk+l30+ Уlпр

lвг=880+115+300+3360=4655 мм.

Потери давления на участке вг находим по формуле 12:

Rlгв=23·4,655=107 Па

Участок дг

Участок дг состоит из конфузора, прямого вертикального участка длиной 880 мм и бокового участка тройника.

Расход -480 м3/ч.

Выбираем скорость 12 м/с. Определяем требуемый диаметр по формуле 8:

Принимаем стандартный диаметр D=110 мм . Площадь поперечного сечения воздуховода, выбранного диаметра, 0,0095 м2. Уточняем скорость по формуле 10:

По диаметру D и скорости v, по номограмме , находим R=23,0 Па/м, Нд=120,6 Па.

Определяем размеры входного отверстия конфузора, исходя из площади входного отверстия по формуле 13:

Примем одну из сторон конфузора b=270 мм.

Длину конфузора (отсасывающего патрубка) находим по формуле 14:

Коэффициент сопротивления конфузора определяется из табл. 8 в зависимости от lк/D>1 и б=30о-тк=0,11.

Расчетная длина участка вг:

Lвг=lk+l30+ Уlпр

lвг=880+300=1180 мм.

Потери давления на участке вг находим по формуле 12:

Тогда, потери давления по длине воздуховода:

Rlгв=23·1,180=27,1 Па

Коэффициенты сопротивления тройника находим, задавшись диаметром объединенного воздуховода D=160 мм, S=0,02011 м2.

Отношение площадей и расходов определяем по формуле 18:

Коэффициент сопротивления тройника определяем из таблицы 13 : проходного участка жпр=0,0 и бокового участка жбок=0,5.

Потери давления на участке рассчитывают по формуле:

Hпт=Rl+УтHд

Потери давления на участке вг составляют:

Нпт.п=107+(0,069+0,11+0,0)120,6=128 Па

Потери давления на участке дг составляют:

Нпт.б=27+(0,11+0,5)120,6=100 Па

Суммарные потери на проходном и боковом участках:

УНпт.п=Нпт.п+Нм.п.=128+250=378 Па,

УНпт.б=Нпт.б+Нм.б.=100+250=350 Па,

где Нм.п.=250,0 Па - потери давления в триере из табл. 1.

Разница давлений между участками вг и дг:

Ндиаф=378-350=16 Па

Так как разница составляет 7 %, что не превышает допустимые10%, то необходимости выравнивания потерь давлений в тройнике нет.

Участок гГ

Участок состоит из прямых горизонтальных участков длиной 2100 мм, и проходного участка тройника.

Расход участка гГ равен сумме расходов на участках вг и дг.

Расход -960 м3/ч.

Диаметр воздуховода на участке гГ-160 мм.

Площадь поперечного сечения воздуховода, выбранного диаметра, 0,02011 м2.

Уточняем скорость по формуле 10:

По диаметру D и скоростиv, по номограмме , находим R=14,1 Па/м, Нд=107,7 Па

Расчетная длина участка гГ:

LгГ=2100 мм.

Потери давления по длине находим по формуле 12:

RlгГ=14,1·2,1=29,6Па

Коэффициенты сопротивления тройника находим, задавшись диаметром объединенного воздуховода D=250 мм, S=0,04909 м2.

Отношение площадей и расходов определяем по формуле 18:

Коэффициент сопротивления тройника определяем из таблицы 13 : проходного участка жпр=0,2 и бокового участка жбок=0,6.

Потери давления на участке рассчитывают по формуле:

Hпт=Rl+УтHд

Потери давления на участке ВГ составляют:

Нпт.б=90+(0,15+0,2)101,2=125,4 Па

Потери давления на участке гГ составляют:

Нпт.п=29,6+0,6·107,7=94,2 Па

Суммарные потери на проходном и боковом участках:

УНпт.п=Нпт.п+Нм.п..=125,4+360,4=486 Па,

УНпт.б=Нпт.б+Нм.б =94.2+378=472 Па,

Разница давлений между участками ВГ и гГ:

Ндиаф=486-472=14 Па

Разница - менее 10%.

Участок ГД

Участок состоит из прямого горизонтального участка длиной 1860 мм.

Расход участка ГД - 2800 м3/ч

Диаметр воздуховода на участке ГД-250 мм, S=0.04909м2.

Уточняем скорость по формуле 10:

По диаметру D и скорости v, по номограмме , находим R=11,0 Па/м, Нд=153,8 Па.

Площадь входного отверстия в циклон равна площади входного патрубка S2=0,05 м2

Расчетная длина участка ГД:

lГД=1860 мм.

Потери давления на участке ГД находим по формуле 12:

Тогда, потери давления по длине воздуховода:

RlГД=11,0·1,86=20,5Па

Потери давления на участке ГД составляют:

УНпт.п=20+486=506 Па

Участок ДЕ

Циклон 4БЦШ-300.

Расход воздуха с учетом подсоса воздуха:

Потери давления в циклоне равны сопротивлению циклона и составляют Нц=951,6 Па.

Суммарные потери на участке ДЕ:

Участок ЕЖ

Участок состоит из конфузора, трех отводов на 90о, прямых горизонтальных участков 550 мм и 1200 мм, прямого вертикального участка длиной 2670 мм, прямого горизонтального участка 360 мм и диффузора.

Расход на участке ЕЖ определим с учетом подсоса в циклоне, равного 150 м3/ч:

Скорость воздуха после циклона 10…12 м/с, так как после циклона воздух очищен.

Скорость воздуха на участке ЕЖ принимаем 11 м/с.

Определяем требуемый диаметр по формуле 8:

Принимаем стандартный диаметр D=315 мм, S=0,07793 м2.

Уточняем скорость по формуле 10:

По диаметру D и скорости v, по номограмме , находим R = 3,8 Па/м, Нд=74,3Па.

Площадь входного отверстия в переходном патрубке S1=0,07793м2, а площадь выходного отверстия циклона S2=0,090 м2, так как S1

Примем одну из сторон конфузора b=450 мм.

Длину конфузора находим по формуле 15:

Коэффициент сопротивления конфузора определяется из табл. 8 в зависимости от lк/D=0,6 и б=30о - тк=0,13.

Необходимо выявить, конфузором или диффузором является переходной патрубок на входе в вентилятор.

Так как на выходе патрубок диаметром 315 мм, а диаметр на входе в вентилятор 320 мм, то переходный патрубок является диффузором со степенью расширения:

Радиус отвода находим по формуле 15:

Коэффициент сопротивления отвода на 90о находим из табл. 10 .

Длину отвода вычисляем по формуле 16:

Расчетная длина участка ЕЖ:

LЕЖ=989,6*3+2670+360+1200+550=7749 мм.

RlЕЖ=3,78·7,749=29 Па.

УНпт.п=1458+29+(0,13+0,1+0,15·3)74,3=1538 Па.

Участок ЖЗ

Участок состоит из диффузора, прямого вертикального участка длиной 12700 мм, отвода на 90 и диффузор с защитным зонтом.

Расход воздуха на этом участке равен расходу при входе в вентилятор, т.е. 3090м3/ч.

Скорость воздуха-11,0 м/с.

Диаметры воздуховодов на участках принимаем равными диаметру до вентилятора, т.е. 315мм.

По диаметру D и скорости v, по номограмме , находим R = 3,8 Па/м, Нд=68,874,3 Па.

Определим, чем служит переходной патрубок на выходе из вентилятора.

Площадь отверстия вентилятора S1=0.305х0,185=0,056 м2, площадь поперечного сечения воздуховода диаметром 315 ммS2=0,07793м2.

S2>S1, следовательно имеет место диффузор со степенью расширения:

Зададимся углом расширения диффузора б=30?. Тогда из табл. 4 коэффициент сопротивления диффузора ж=0,1.

Расчетная длина участка ЕЖ:

lЕЖ=12700 мм.

Потери давления по длине воздуховода определяем по формуле 11:

RlЕЖ=3,78·12,7=48,0 Па.

На трубе предусмотрен диффузор с защитным зонтом.

Коэффициент потерь находим в табл. 6 ж=0,6.

Потери давления на участке ЕЖ составляют:

УНпт.б=48+(0,1+0,6)74,3=100 Па.

Общее сопротивление сети по главной магистрали составляет:

УНпт.п=100+1538=1638 Па.

С учетом коэффициента запаса 1,1 и возможного вакуума в помещениях цеха 50 Па требуемое давление, развиваемое вентилятором.

Производственные процессы нередко сопровождаются выделением пылеобразных элементов или газов, которые загрязняют воздух в помещении. Проблему помогут решить аспирационные системы, спроектированные и монтированные в соответствии с нормативными требованиями.

Разберемся, как работают и где применяют такие устройства, какие бывают виды воздухоочистительных комплексов. Обозначим главные рабочие узлы, опишем нормы проектирования и правила установки аспирационных систем.

Загрязнение воздуха – неизбежная часть многих производственных процессов. Чтобы соблюсти установленные санитарные нормы чистоты воздуха, используют процессы аспирации. С их помощью можно эффективно удалять пыль, грязь, волокна и другие подобные примеси.

Аспирация представляет собой засасывание, которое осуществляется путем создания в непосредственной близости от источника загрязнений области пониженного давления.

Чтобы создавать такие системы, необходимы серьезные специальные знания и практический опыт. Хотя работа средств аспирации тесно связана с функционированием , не всякий специалист по вентиляции справится с проектированием и монтажом оборудования этого типа.

Для достижения максимальной эффективности комбинируют методы вентилирования и аспирации. Вентиляционная система в производственном помещении должна быть оборудована , чтобы обеспечить постоянное поступление свежего воздуха снаружи.

Аспирация широко применяется в таких областях промышленности:

  • дробильное производство;
  • обработка древесины;
  • изготовление потребительской продукции;
  • прочие процессы, которые сопровождаются выделением большого количества вредных для вдыхания веществ.

Обеспечить безопасность сотрудников стандартными средствами защиты удается далеко не всегда, и аспирация может стать единственной возможностью наладить безопасный производственный процесс в цеху.

Аспирационные установки предназначены для эффективного и быстрого удаления из воздуха различных мелких загрязнений, которые образуются в процессе промышленного производства

Удаление загрязнений с помощью систем этого типа выполняется по специальным воздуховодам, которые имеют большой угол наклона. Такая позиция позволяет предотвратить появление так называемых зон застаивания.

Мобильные вентиляционно-аспирационные установки просты в монтаже и эксплуатации, они прекрасно подходят для небольших предприятий или даже для домашней мастерской

Показателем эффективности работы такой системы считают степень невыбивания, т.е. соотношения количества загрязнений, которые были удалены, к массе вредных веществ, не попавших в систему.

Различают два типа систем аспирации:

  • модульные системы – стационарное устройство;
  • моноблоки – мобильные установки.

Кроме того, аспирационные системы классифицируют по уровню напора:

  • низконапорные – менее 7,5 кПа;
  • средненапорные – 7,5-30 кПа;
  • высоконапорные – свыше 30 кПа.

Комплектация аспирационной системы модульного и моноблочного типа отличается.

В горячих цехах подогрев поступающего снаружи воздуха не нужен, достаточно сделать проем в стене и закрыть его заслонкой.

Выводы и полезное видео по теме

Здесь представлен обзор распаковки и монтажа мобильной системы аспирации RIKON DC3000 для деревообрабатывающей промышленности:

В этом ролике продемонстрирована стационарная система аспирации, используемая при производстве мебели:

Системы аспирации – современный и надежный способ очистки воздуха в промышленных помещениях от опасных загрязнений. Если конструкция правильно спроектирована и смонтирована без ошибок, она продемонстрирует высокую эффективность при минимальных затратах.

Есть, что дополнить, или возникли вопросы по теме аспирационных систем? Пожалуйста, оставляйте комментарии к публикации. Форма для связи находится в нижнем блоке.