Воздушный режим промышленных зданий программа. Воздушный режим помещений. Принципиальные решения вентиляции пром. здания

Воздушным режимом здания называют совокупность факторов и явлений, определяющих общий процесс обмена воздуха между всеми его помещениями и наружным воздухом, включающий перемещение воздуха внутри помещений, движение воздуха через ограждения, проемы, каналы и воздуховоды и обтекание здания потоком воздуха. Традиционно при рассмотрении отдельных вопросов воздушного режима здания их объединяют в три задачи: внутреннюю, краевую и внешнюю.

Общая физико-математическая постановка задачи о воздушном режиме здания возможна лишь в самом обобщенном виде. Отдельные процессы весьма сложны. Описание их базируется на классических уравнениях переноса массы, энергии, импульса в турбулентном потоке.

С позиций специальности «Теплоснабжение и вентиляция» наиболее актуальны следующие явления: инфильтрация и эксфильтрация воздуха через наружные ограждения и проемы (неорганизованный естественный воздухообмен, увеличивающий теплопотери помещения и снижающий теплозащитные свойства наружных ограждений); аэрация (организованный естественный воздухообмен для вентиляции теплонапряженных помещений); перетекание воздуха между смежными помещениями (неорганизованное и организованное).

Естественными силами, вызывающими движение воздуха в здании, являются гравитационное и ветровое давления. Температура и плотность воздуха внутри и снаружи здания обычно неодинаковы, в результате чего гравитационное давление по сторонам ограждений оказывается разным. За счет действия ветра на наветренной стороне здания создается подпор, а на поверхностях ограждений возникает избыточное статическое давление. На заветренной стороне образуется разрежение и статическое давление оказывается пониженным. Таким образом, при ветре давление с внешней стороны здания отличается от давления внутри помещений.

Гравитационное и ветровое давления обычно действуют совместно. Воздухообмен под влиянием этих естественных сил трудно рассчитывать и прогнозировать. Его можно уменьшить, уплотняя ограждения, а также частично регулировать с помощью дросселирования каналов вентиляции, открыванием окон, фрамуr и вентиляционных фонарей.

Воздушный режим связан с тепловым режимом здания. Инфильтрация наружного воздуха приводит к дополнительным затратам тепла на его подогрев. Эксфильтрация влажного внутреннего воздуха увлажняет и снижает теплозащитные свойства ограждений.



Положение и размеры зоны инфильтрации и эксфильтрации в здании зависят от геометрии, конструктивных особенностей, режима вентилирования здания, а также от района строительства, времени года и параметров климата.

Между фильтрующимся воздухом и ограждением происходит теплообмен, интенсивность которого зависит от места фильтрации в конструкции ограждения (массив, стык панелей, окна, воздушные прослойки и т. д.). Таким образом, возникает необходимость в расчетах воздушного режима здания: определении интенсивности инфильтрации и эксфильтрации воздуха и решении задачи теплопередачи отдельных частей ограждения при наличии воздухопроницания.

Воздух, находящийся внутри помещений, может изменять свой состав, температуру и влажность под действием самых разнообразных факторов: изменений параметров наружного (атмосферного) воздуха, выделения тепла, влаги, пыли и т.д. В результате воздействия этих факторов воздух помещений может принимать неблагоприятные состояния для людей. Чтобы избежать чрезмерного ухудшения качества внутреннего воздуха, требуется осуществлять воздухообмен, то есть производить смену воздуха в помещении. Таким образом, основной задачей вентиляции является обеспечение воздухообмена в помещении для поддержания расчетных параметров внутреннего воздуха .

Вентиляцией называется совокупность мероприятий и устройств, обеспечивающих расчетный воздухообмен в помещениях . Вентиляция (ВЕ) помещений обычно обеспечивается при помощи одной или нескольких специальных инженерных систем – систем вентиляции (СВЕ), которые состоят из различных технических устройств. Эти устройства предназначены для выполнения отдельных задач:

  • нагревание воздуха (воздухонагреватели),
  • очистка (фильтры),
  • транспортирование воздуха (воздуховоды),
  • побуждение движения (вентиляторы),
  • распределение воздуха в помещении (воздухораспределители),
  • открывание и закрывание каналов для движения воздуха (клапана и заслонки),
  • снижение уровня шума (шумоглушители),
  • снижение вибрации (виброизоляторы и гибкие вставки), и многое другое.

Кроме применения технических устройств для нормального функционирования вентиляции требуется реализация некоторых технических и организационных мероприятий. К примеру, для снижения уровня шума требуется соблюдение нормируемых скоростей воздуха в воздуховодах. ВЕ должна обеспечивать не просто воздухообмен (ВО), а расчетный воздухообмен (РВО). Таким образом, устройство ВЕ требует обязательного предварительного проектирования , в процессе которого определяется РВО, конструкция системы и режимы работы всех ее устройств. Поэтому ВЕ не следует путать с проветриванием, которое представляет неорганизованный воздухообмен. Когда житель открывает форточку в жилой комнате, это еще не вентиляция, так как неизвестно, сколько воздуха требуется, и сколько его в действительности поступает в помещение. Если же выполнены специальные расчеты, и определено, сколько воздуха надо подать в данное помещение и на какой угол надо открыть форточку, чтобы именно такое количество его и поступало в помещение, то можно говорить об устройстве вентиляции с естественным побуждением движения воздуха.



Вопрос 46.(+ Вопрос 80). Какие вопросы решает внутренняя задача воздушного режима?

Процессы перемещения воздуха внутри помещений, движения его через ограждения и отверстия в ограждениях, по каналам и воздуховодам, обтекания здания потоком воздуха и взаимодействия здания с окружающей воздушной средой объединяются общим понятием воздушный режим здания. При рассмотрении воздушного режима здания различают три задачи: внутреннюю, краевую и внешнюю.

К внутренней задаче воздушного режима относятся следующие вопросы:

а) расчет требуемого воздухообмена в помещении (определение количества поступающих в помещения вредных выделений, выбор производительности систем местной и общеобменной вентиляции);

б) определение параметров внутреннего воздуха (температуры, влажности, скорости движения и содержания вредных веществ) и распределения их по объему помещений при различных вариантах подачи и удаления воздуха. Выбор оптимальных вариантов подачи и удаления воздуха;

в) определение параметров воздуха (температуры и скорости движения) в струйных течениях, создаваемых приточной вентиляцией;

г) расчет количества вредных выделений, выбивающихся из-под укрытий местных отсосов (диффузия вредных выделений в потоке воздуха и в помещениях);

д) создание нормальных условий на рабочих местах (душирование) или в отдельных частях помещений (оазисы) путем подбора параметров подаваемого приточного воздуха.

Вопрос 47. Какие вопросы решает краевая задача воздушного режима?

Краевая задача воздушного режима объединяет следующие вопросы:

а) определение количества воздуха, проходящего через наружные (инфильтрация и эксфильтрация) и внутренние (перетекание) ограждения. Инфильтрация приводит к увеличению теплопотерь помещений. Наибольшая инфильтрация наблюдается в нижних этажах многоэтажных зданий и в высоких производственных помещениях. Неорганизованное перетекание воздуха между помещениями приводит к загрязнению чистых помещений и распространению по зданию неприятных запахов;



б) расчет площадей отверстий для аэрации;

в) расчет размеров каналов, воздуховодов, шахт и других элементов систем вентиляции;

г) выбор способа обработки воздуха - придание ему определенных «кондиций»: для притока - это нагрев (охлаждение), увлажнение (осушка), очистка от пыли, озонирование; для вытяжки - это очистка от пыли и вредных газов;

д) разработка мероприятий по защите помещений от врывания холодного наружного воздуха через открытые проемы (наружные двери, ворота, технологические отверстия). Для защиты обычно применяют воздушные и воздушно-тепловые завесы.

Вопрос 48. Какие вопросы решает внешняя задача воздушного режима?

Внешняя задача воздушного режима включает следующие вопросы:

а) определение давления, создаваемого ветром, на здание и отдельные его элементы (например, дефлектор, фонарь, фасады и т. д.);

б) расчет максимально возможного количества выбросов, не приводящего к загрязнению территории промышленных предприятий; определение проветриваемости пространства вблизи здания и между отдельными зданиями на промышленной площадке;

в) выбор мест расположения воздухозаборов и вытяжных шахт вентиляционных систем;

г) расчет и прогнозирование загрязнения атмосферы вредными выбросами; проверка достаточности степени очистки выбрасываемого загрязненного воздуха.

Основные параметры физико-климатических факторов

Климат - совокупность погодных условий, повторяющихся из года в год. На климат влияют: высота, географическое положение, близость больших водоемов, течение, преобладающие ветра. Воздух (температура, влажность, ветер), температура и влажность грунта, осадки, солнечная радиация.

Факторы, определяющие микроклимат помещения

Тепловая обстановка в помещении определяется совместным действием ряда факторов: температуры, подвижности и влажности воздуха помещения, наличием струйных течений, распределением параметров состояния воздуха в плане и по высоте помещения (всё вышеперечисленное характеризует воздушный режим помещения), а также радиационным излучением окружающих поверхностей, зависящим от их температуры, геометрии и радиационных свойств (характеризующим радиационный режим помещения). Комфортное сочетание этих показателей соответствует условиям, при которых отсутствует напряжение в процессе терморегуляции человека.

Воздушный и радиационный режим помещения

Процессы перемещения воздуха внутри помещений, движения его через ограждения и отверстия в ограждениях, по каналам и воздуховодам, обтекания здания потоком воздуха и взаимодействия здания с окружающей воздушной средой объединяются общим понятием воздушный режим здания. В отоплении рассматривается тепловой режим здания. Эти два режима, а также влажностный режим тесно связаны между собой. Аналогично тепловому режиму при рассмотрении воздушного режима здания различают три задачи: внутреннюю, краевую и внешнюю.

К внутренней задаче воздушного режима относятся следующие вопросы:

а) расчет требуемого воздухообмена в помещении (определение количества поступающих в помещения вредных выделений, выбор производительности систем местной и общеобменной вентиляции);

б) определение параметров внутреннего воздуха (температуры, влажности, скорости движения и содержания вредных веществ) и распределения их по объему помещений при различных вариантах подачи и удаления воздуха. Выбор оптимальных вариантов подачи и удаления воздуха;

в) определение параметров воздуха (температуры и скорости движения) в струйных течениях, создаваемых приточной вентиляцией;

г) расчет количества вредных выделений, выбивающихся из-под укрытий местных отсосов (диффузия вредных выделений в потоке воздуха и в помещениях);

д) создание нормальных условий на рабочих местах (душирование) или в отдельных частях помещений (оазисы) путем подбора параметров подаваемого приточного воздуха.

Радиационный режим. Лучистый теплообмен.

Важной составляющей сложного физического процесса, обуславливающего тепловой режим помещения, является теплообмен на его поверхностях.

Лучистый теплообмен в помещении имеет особенность: он происходит в замкнутом объеме в условиях ограниченных температур, определенных радиационных свойств поверхностей и геометрии их расположения. Тепловое излучение поверхностей в помещении можно рассматривать как монохроматическое, диффузное, подчиняющееся законам Стефана-Больцмана, Ламберта и Кирхгофа, инфракрасное излучение серых тел.

Как один из видов поверхностей в помещении своеобразные радиационные свойства имеет оконное стекло. Оно частично проницаемо для излучения. Оконное стекло, хорошо пропускающее коротковолновое излучение, практически непрозрачно для излучения с длиной волн более 3-5 мкм, которое характерно для теплообмена в помещении.

Воздух помещения при расчете лучистого теплообмена между поверхностями обычно считают лучепрозрачной средой. Он состоит в основном из двухатомных газов (азота и кислорода), которые практически прозрачны для тепловых лучей и сами не излучают тепловой энергии. Незначительное содержание многоатомных газов (водяного пара и углекислого газа) при малой толщине слоя воздуха в помещении практически не изменяет этого свойства.

Существуют основные параметры воздушной среды, определяющие возможность существования человека на открытой местности и в жилище. В частности, это концентрация различных примесей в воздухе помещения, зависящая от воздушного, теплового и газового режимов здания. Вредные примеси в приземном слое атмосферы могут быть в виде аэрозолей, пылевидных частиц, различных газообразных веществ на молекулярном уровне.

При распространении в воздухе под действием коагуляции или различных химических реакций вредные примеси могут изменяться количественно и по химическому составу. Газовый режим здания состоит из трех взаимосвязанных частей. Внешняя часть — процессы распределения вредных примесей в приземном слое атмосферы c потоками воздуха, омывающими здание и перемещающие вредные вещества.

Краевая часть — процесс проникновения вредных примесей в здание через щели в наружных ограждающих конструкциях, открытые окна, двери, другие проемы и через системы приточной механической вентиляции, а также перемещение примесей по зданию. Внутренняя часть — процесс распределения вредных примесей в помещениях здания (газовые режимы помещений).

Для этого применяется многозонная модель вентилируемого помещения, на основании которой помещение рассматривается как совокупность элементарных объемов, взаимосвязь и взаимодействие между которыми происходит через границы элементарных объемов . В рамках газового режима здания изучается конвективный и диффузионный перенос вредных примесей. Количество аэроионов в воздухе характеризуется их концентрацией в кубометре воздуха, а аэроионный режим является частью газового режима здания.

Аэроионы — это мельчайшие комплексы атомов или молекул, несущие положительный или отрицательный заряд. В зависимости от размеров и подвижности, различают три группы аэроионов: легкие, средние и тяжелые. Причины ионизации воздуха различны: присутствие радиоактивных веществ в коре Земли, наличие радиоактивных элементов в строительных и облицовочных материалах, естественная радиоактивность как воздуха и почвы (радон и торон), так и горных пород (изотопы К40, U238, Th232).

Главный ионизатор воздуха — это космическое излучение, а также распыление воды, атмосферное электричество, трение частиц песка, снега и пр. Ионизация воздуха происходит следующим образом: под действием внешнего фактора молекуле или атому газа сообщается энергия, необходимая для удаления одного электрона из ядра. Нейтральный атом становится положительно заряженным, а образовавшийся свободный электрон присоединяется к одному из нейтральных атомов, передавая ему отрицательный заряд, образуя отрицательный аэроион.

К таким положительно и отрицательно заряженным аэроионам в доли секунды присоединяется определенное число молекул и газов, входящих в состав воздуха. В результате образуются комплексы молекул, называемые легкими аэроионами. Легкие аэроионы, сталкиваясь в атмосфере с другими аэроионами и ядрами конденсации, образуют аэроионы крупных размеров — средние аэроионы, тяжелые аэроионы, ультратяжелые аэроионы.

Подвижность аэроионов зависит от газового состава воздуха, температуры и атмосферного давления. Размеры и подвижность положительных и отрицательных аэроионов зависят от относительной влажности воздуха — при увеличении влажности подвижность аэроионов уменьшается. Заряд аэроиона является основной его характеристикой. Если легкий аэроион теряет свой заряд, то он исчезает, а при потере заряда тяжелым или средним аэроионом распада такого аэроиона не происходит, и в дальнейшем он может приобретать заряд любого знака.

Концентрация аэроионов измеряется в количестве элементарных зарядов в кубометре воздуха: е = +1,6 × 10-19 Кл/м3 (е/м3). Под воздействием ионизации в воздушной среде происходят физико-химические процессы возбуждения главных составляющих воздуха — кислорода и азота. Наиболее устойчивые отрицательные аэроионы могут образовывать следующие элементы химических веществ и их соединений: атомы углерода, молекулы кислорода, озона, углекислого газа, диоксида азота, диоксида серы, молекулы воды, хлора и другие.

Химический состав легких аэроионов зависит от химического состава воздушной среды. Это как влияет на газовый режим здания и помещения, так и приводит к увеличению в воздухе концентрации стабильных молекулярных аэроионов. На вредные примеси установлены нормы предельно допустимой концентрации (ПДК), как на нейтральные незаряженные молекулы. Вредное воздействие заряженных молекул примесей на организм человека увеличивается. «Вклад» каждого вида молекулярных ионов в дискомфорт или в комфорт окружающей человека воздушной среды различен.

Чем чище воздух, тем дольше время жизни легких аэроионов, и наоборот — при загрязненности воздуха время жизни легких аэроионов мало. Положительные аэроионы менее подвижны и дольше живут в сравнении с отрицательными аэроионами. Другим фактором, характеризующим аэроионный режим помещения здания, является коэффициент униполярности, показывающий количественное преобладание отрицательных аэроионов над положительными для какой-либо группы аэроионов.

Для приземного слоя атмосферы коэффициент униполярности равен 1,1-1,2, показывающий превышение количества отрицательных аэроионов над количеством положительных. Коэффициент униполярности зависит от следующих факторов: времени года, рельефа местности, географического положения и электродного эффекта от воздействия отрицательного заряда поверхности Земли, при котором положительное направление электрического поля вблизи поверхности Земли создает преимущественно положительные аэроионы.

В случае противоположного направления электрического поля преимущественно образуются отрицательные аэроионы. Для гигиенической оценки аэроионного режима помещения принят показатель загрязненности воздуха, который определяется отношением суммы тяжелых аэроионов положительной и отрицательной полярности к сумме положительных и отрицательных легких аэроионов. Чем меньше величина показателя загрязненности воздуха, тем более благоприятен аэроионный режим.

Концентрация легких аэроионов обеих полярностей значительно зависит от степени урбанизации местности и от экологического состояния окружающей человека среды обитания. Легкие аэроионы оказывают лечебное и профилактическое действие на организм человека в концентрации: 5 × 108-1,5 × 109 е/м3. В сельских районах концентрация легких аэроионов находится в пределах полезной для человека нормы.

На курортах и в горной местности концентрация легких аэроионов несколько выше нормы, но полезное действие остается, а в крупных городах на улицах с интенсивным движением транспорта концентрация легких аэроионов ниже нормы и может приближаться к нулю. Это однозначно свидетельствует о загрязненности атмосферного воздуха. Отрицательные аэроионы более чувствительны к примесям в сравнении с положительными аэроионами.

Большое влияние на аэроионный режим оказывает растительность. Летучие выделения растений, называемые фитонцидами, позволяют качественно и количественно улучшить аэроионный режим окружающей среды. В сосновом лесу растет концентрация легких аэроионов и уменьшается концентрация тяжелых аэроионов. Среди растений, способных благоприятно повлиять на аэроионный режим, можно выделить следующие: подснежник, сирень, белая акация, герань, олеандр, ель сибирская, пихта.

Фитонциды влияют на аэроионный режим процессами перезарядки аэроионов, за счет чего возможна трансформация средних и тяжелых аэроионов в легкие. Ионизованность воздуха имеет значение для здоровья и самочувствия человека. Пребывание людей в вентилируемом помещении с высокой влажностью и запыленностью воздуха при недостаточном воздухообмене значительно уменьшает число легких аэроионов. При этом растет концентрация тяжелых аэроионов, а заряженная ионами пыль задерживается в дыхательных путях человека на 40 % больше.

Люди часто жалуются на недостаток свежего воздуха, быстрое утомление, головные боли, пониженное внимание и раздражительность. Это связано с тем, что параметры теплового комфорта хорошо изучены, а параметры воздушного комфорта изучены недостаточно. Воздух, проходящий обработку в кондиционере, в приточной камере, в системе воздушного отопления, практически полностью теряет аэроионы, и аэроионный режим в помещении ухудшается в десятки раз.

Легкие аэроионы оказывают лечебное и профилактическое действие на организм человека в концентрации 5 × 108- 1,5 × 109 е/м3. При искусственной ионизации воздуха образующиеся легкие аэроионы обладают такими же полезными свойствами, что и аэроионы, образовавшиеся естественным образом . В соответствии с нормами повышенная и пониженная концентрации легких аэроионов в воздухе отнесены к группе физически вредных факторов.

Существует несколько типов аппаратов для искусственной ионизации воздуха в помещениях, среди которых можно выделить ионизаторы следующего типа: коронарные, радиоизотопные, термоэлектронные, гидродинамические и фотоэлектрические. Ионизаторы могут быть местные и общие, стационарные и переносные, регулируемые и нерегулируемые, генерирующие униполярные и биполярные легкие аэроионы.

Выгодно совмещать аэроионизаторы с системами приточной вентиляции и кондиционирования воздуха, при этом необходимо, чтобы аэроионизаторы были расположены как можно ближе к обслуживаемой зоне помещения, чтобы снизить потери аэроионов при их транспортировке. Подогрев воздуха ведет к увеличению числа легких аэроионов, но взаимодействие аэроионов с металлическими частями калориферов и воздухоподогревателей уменьшает их концентрацию, охлаждение воздуха ведет к заметному уменьшению концентрации легких аэроионов, осушение и увлажнение приводит к уничтожению всех легких подвижных аэроионов и образованию тяжелых аэроионов за счет распыления воды.

Применение пластмассовых деталей систем вентиляции и кондиционирования воздуха позволяет снизить адсорбцию легких аэроионов и увеличить их концентрацию в помещении. Отопление благоприятно действует на увеличение концентрации легких аэроионов в сравнении с концентрацией легких аэроионов в наружном воздухе. Рост легких аэроионов при работе системы отопления зимой компенсируется убылью этих аэроионов в результате жизнедеятельности человека.

После камеры орошения снижение легких отрицательных аэроионов на основе молекулы озона, кислорода и оксида азота происходит в десятки раз, а вместо этих аэроионов появляются аэроионы паров воды. В подземных помещениях с ограниченной вентиляцией снижение количества легких отрицательных аэроионов на основе молекулы озона и кислорода происходит в сотни раз, а на основе молекулы оксида азота — до 20 раз.

От систем кондиционирования воздуха концентрация тяжелых аэроионов возрастает незначительно, а в присутствии людей концентрация тяжелых аэроионов возрастает в разы. Баланс образования и уничтожения легких аэроионов можно характеризовать следующими существенными обстоятельствами: поступление легких аэроионов с притоком наружного воздуха в обслуживаемые помещения (при наличии легких аэроионов снаружи), изменение концентрации легких аэроионов при прохождении воздуха в обслуживаемые помещения (механическая вентиляция и кондиционирование воздуха уменьшают концентрацию аэроионов), понижение концентрации легких аэроионов при большом количестве людей в помещении, высокой запыленности, сжигании газа и пр.

Рост концентрации легких аэроионов происходит при хорошей вентиляции, наличии фитонцидообразующих растений, искусственных ионизаторов воздуха, хорошей экологии жилища и успешных мерах по охране и улучшению состояния окружающей среды в населенных пунктах. Характер изменения концентрации легких положительных и отрицательных аэроионов в приземном слое атмосферы в годовом режиме совпадает с колебанием температуры наружного воздуха, видимости в атмосфере, продолжительности инсоляции территории в годовом режиме.

С ноября по март происходит рост концентрации тяжелых аэроионов и уменьшение концентрации легких аэроионов, весной и летом сокращается количество всех групп тяжелых аэроионов и растет количество легких аэроионов. В суточном режиме концентрация легких аэроионов максимальна в вечерние и ночные часы, когда воздух чист — с восьми вечера до четырех часов утра, концентрация легких аэроионов минимальна с шести утра до трех часов дня.

Перед грозой растет концентрация положительных аэроионов, во время грозы и после грозы происходит рост числа отрицательных аэроионов. Вблизи водопадов, у моря во время прибоя, у фонтанов и в других случаях распыления и разбрызгивания воды увеличивается число легких и тяжелых положительных и отрицательных аэроионов. Табачный дым ухудшает аэроионный режим помещения, сокращая количество легких аэроионов.

В помещении площадью около 40 м2 при слабой вентиляции в зависимости от количества выкуренных сигарет происходит уменьшение концентрации легких аэроионов. Дыхательные пути и кожа человека являются зонами, которые воспринимают аэроионы. Большая или меньшая часть легких и тяжелых аэроионов воздуха при прохождении по дыхательным путям отдают свои заряды стенкам воздухопропускающего тракта.

Повышенный уровень легких аэроионов приводит к сокращению заболеваемости и смертности, ионизированный воздух повышает сопротивляемость организма к заболеваниям. При наличии чистого ионизированного легкими аэроионами воздуха повышается работоспособность, ускоряется ход восстановления работоспособности после длительных нагрузок, повышается устойчивость организма к токсичным воздействиям окружающей среды.

На сегодняшний день известно, что ионизация воздуха до величины 2 × 109-3 × 109 е/м3 оказывает благоприятное, нормализующее влияние на организм человека. Более высокие концентрации — более 50 × 109 е/см3 ионизации — неблагоприятны, желательный уровень — 5 × 108-3 × 109 е/м3. Эффективность аэроионного режима напрямую связана с выполнением норм по воздухообмену. Ионизированный воздух должен быть обеспыленным и очищенным от химических загрязнений различного происхождения.

Анологично тепловому различают 3 задачи при рассмотрении в.р.з.

Внутреннию

Краевую

Внешнию.

К внутренней задачи относится:

1. расчет требуемого воздухообмена (определение кол-ва вредных выделений,производительнось местной и общеообменной вентиляции)

2. определение параметров внутреннего воздуха ,содержание вредных веществ

и распределение их по объёму помещений при разных схемах вентиляции;

выбор оптимальных схем подачи и удаления воздуха.

3. определение темп-ры и скорости воздуха в струях создаваемых притоком.

4. расчет количества вредностей выбивающихся из укрытий технологического

обородувания

5. создание нормальных условий труда,душирование и создание оазисов, путем выбора параметров приточного воздуха.

К краевой задачи относиться:

1.определение перетоков через наружные ограждения (инфильтрация),что приводит к увеличению теплопотерь и распрастранению неприятных запахов.

2. расчет проёмов для аэрации

3. расчёт размеров каналов, воздуховодов, шахт и др. элементов

4. выбор способа обработки воздуха переточного (нагрев,охлаждение,очистка) для вытяжного- очистка.

5.расчет защиты от врывания воздуха через открытые проёмы (воздушные завесы)

К внешней задачи относится:

1. определение давления создаваемого ветром на здание

2. расчет и определение проветриваемости пром. площадки

3. выбор мест размещения воздухозаборов и вытяжных шахт

4. расчет ПДВ и проверка достаточности степени очистки

  1. Местная вытяжная вентиляция. Местные отсосы, их классификация. Вытяжные зонты, требования и расчет.

Приемущества местной вытяжной вентиляции (МВВ)

Удаление вредных выделений непосредственно от мест их выделения

Относительно небольшие расходы воздуха.

В связи с этим МВВ наиболее эффективный и экономичный способ.

Основными элементами систем МВВ является

2 – сеть воздуховодов

3 – вентиляторы

4 – очистные устройства

Основные требования к местным отсосам:

1) локализация вредных выделений в месте их образования

2) удаление загрязненного воздуха за пределы помещения с высокими концентрациями на много больше чем при общеобменной вентиляции.

Требования которые предъявляют к МО разделяются на санитарно-гигиенические и технологические.

Санитарно-гигиенические требования:

1) максимальная локализация вредных выделений

2) удаляемый воздух не должени проходить через органы дыхания рабочих.

Технологические треьования:

1) место образования вредных выделений должно быть максимально укрыто на сколько это позволяет технологический процесс, а открытые рабочие проемы должны иметь минимальные размеры.


2) МО не должен мешать нормальной работе и снижать производительность труда.

3) Вредные выделения как правило должны удалятся от места их образования в направлении их интенсивного движения. Например горячие газы – вверх, холодные – вниз.

4) Конструкция МО должна быть простой, иметь малое аэродинамическое сопротивление, легко монтироватся и демонтироватся.

Классификация МО

Конструктивно МО оформляют в виде различных укрытий этих источников вредных выделений. По степени изоляции источника от окружающего пространстрва МО можно разделить на три группы:

1) открытые

2) полуоткрытые

3) закрытые

К МО открытого типа относятся воздухопроводы располагаемые за пределами источнмков вредных выделений над ним или сбоку или снизу, примерами таких таких МО является вытяжные панели.

К полуоткрытым относятся укрытие внутри которых находятся источники вредностей. Укрытие имеет открытый рабочий проем. Примереми таких укрытий является:

Вытяжные шкафы

Вентиляционные камеры или шкафы

Фасонные укрытия от вращающихся или режущих инструментов.

К полностью закрытые отсосы являются кожухом или частью аппарта, который имеет небольшие неплотности (в местах соприкосновения кожуха с движущимися частями оборудования). В настоящее время некоторые виды оборудования выполняются со всьроенными МО (это окрасочные и сушильные камеры, дерево оьрабатывающие станки).

Открытые МО. К открытым МО прибегают тогда когда неваозможно применить полуоткрытые ли полностью закрытые МО что обуславливается особенностями технолгического процесса. Наиболее распостраненнвми МО открытого типа являются зонты.

Вытяжные зонты.

Вытяжными зонтами называется воздухоприемники выполненные в виде усеченных перамид расположенные над источниками вредных выделений. Вытяжные зонты как правило служат только для улавливающихся вверх потоков вредных веществ. Это происходит когда вредные выделения нагреты и образуется стойкий температурный поток (температура >70). Вытяжные зонты имеют большое распостранение значительно больше того чем они заслуживают. Для зонтов характерно то, что между источником и воздухоприемником имеется разрыв, пространство незащищенное от воздуха окружающей среды. Вледствии чего окружающий воздух свободно подтекает к источнику и итклоняет поток вредных выделений. В результате чего зонты требуют значительных объемов, что являетяс недостатком зонта.

Зонты бывают:

1) простые

2) в виде козырьков

3) активные(со щелями по периметру)

4) с поддувом воздуха (активированные)

5) групповые.

Зонты устраиваются как с местной так и с механической вытяжной вентиляцией, но основное условие применение последних является наличие мощных гравитационных сил в потоке.

Для работы зонтов должно соблюдатся следующее

1) отсасываемое зонтом количество воздуха должно быть не менее того которое выделяется из источника и присоединяется на пути от исочника до зонта с учетом влияния боковых токов воздуха.

2) Воздух подтекающий к зонту должен иметь запас энергии (в основном тепловой достаточный для преодрления гравитационных сил)

3) Габариты зонта должны быть больше габаритов подтекающей среды/

4) Необходимо наличие организованного потока во избежании опрокидования тяги (для естественной вентиляции)

5) Эффективная работа зонта во многом определяется равномерности сечения. Она зависит от угла раскрытия зонта α. α =60 то Vц/Vс=1,03 для круглого или квадратного сечения, 1,09 для прямоугольного α=90 1,65.Рекомендуемый угол раскрытия α=65, при котором достигается наибольшая равномерность поля скоростей.

6) Размеры прямоугольного зонта в плане А=а+0,8h, Б=b+0,8h, где h расстояние от оборудования до низа зонта h<08dэ, где dэ эквивалентный по площади диаметр источника

7) Объем отсасываемого воздуха, определяется в зависимости от тепловой мощности источника и подвижности воздуха в помещении Vn при малой тепловой мощностим ведется по формулам L=3600*F3*V3 м3/ч где f3 – площадь всасывания, V3 – скорость всасывания. Для нетоксичных выделений V3=0.15-0.25 м/с. Для токсичных следует принимать V3= 1.05-1.25, 0.9-1.05, 0.75-0.9, 0.5-0.75 м/с.

При знасительных тепловыделениях объем воздуха отсасываемый зонтом определяется по формуле L 3 =L k F 3 /F n Lk- объем воздуха поднимающийся к зонту с конвективной струей Qk – количество конвективной теплоты выделенной с поверхности источника Q k = α k Fn(t n -t в).

Если расчет зонта производят на максимальное выделение вредности то можно активный зонт не устраивать, а обходится обычным зонтом.

  1. Отсасывающие панели и бортовые отсосы, особенности и расчет.

В тех случаях когда по конструктивным соображениям соосный отсос нельзя располагать достаточно близко над источником, и поэтому производительность отсоса чрезмерно высока. Когда необходимо отклонять поднимающийся над теплоисточником струю так чтобы вредные выделения не попадали в зону движения рабочего для этого применяют отсасывающие панели.

Конструктивно эти местные отсосы делятся на

1 – прямоугольные

2 – панели равномерного всасывания

прямоугольные всасывающие панели бывают трех видов:

а) односторонние

б) с экраном (для снижения объемного отсоса)

в) комбинированные (с отсосом в строну и вниз)

объем воздуха удаляемый любой панелью определяется по формуле где с – коэф. зависящий от конструкции панели и ее распложения относительно источника тепла, Qк – количество конвективного тепла выделяемого источникаом, H – расстояние от верхней плоскости источника до центра всасывающих отверстий панели, В – длинна источника.

Комбинированная панель применяется для удаления теплового потока содержащего не только газы, но и окружающую пыль 60% удаляется в сторону, а 40% вниз.

Панели равномерного всасывания применяются в сварочных цехах получили распространение наклонные панели обеспечивающие отклонение факела вредных веществ от лица сварщика. Одна из наиболее распостраненных является панель Чернобережского. Всасывающее отверстие выполнено в виде решетки, живое сечение щелей кот составляет 25% площади панели. Рекомендуемая скорость воздуха в живом сечении щелей принимается равной 3-4 м/с. Общий расход воздуха рассчитывается по удельному расходу равному 3300 м/ч на 1 м2 всасывающей панели.Бортовые тососы. Это устройство для удаления воздуха вместе с вредными выделениями в ванной где происходит термическая обработка. Отсос происходит по бортам.

Различают:

Однобортовые отсосы когда щель отсоса расположенная вдоль одной из длинных сторон ванны.

Двухбортовые, когда щели располженны с двух сторон.

Бортовой отсос является простым когда щели расположены в вертикальной плоскости.

Опрокинутый когда щель расположена горизонтально.

Бывают сплошные, секционные с поддувом.

Чем токсичнее выделения зеркала ванны, тем ближе их нужно прижимать к зеркалу, чтобы вредные выделения не попали в зону дыхания рабочих. Для этого при прочих равных условиях нужно повышать объемы отсасываемого воздуха.

При выборе типа бортого отсоса необходимо учитывать следующее:

1) простые отсосы следует применять при высоком стоянии уровня раствора в ванне, когда расстояние до щели отсоса составляет менее 80-150 мм, при более низком стоянии применяют опрокинутые отсосы, требующие значительно меньше расхода воздуха.

2) Однобортовые применяют если ширина ванны значительно меньше 600мм, если больше то двухбортовые.

3) Если по ходу продува в ванну опускают крупные вещи которые могут нарушать работу однобортового отсоса, то применяю двухботовые.

4) Сплошные по конструкции применяются при длинне до 1200мм а сенкционные при длнинне больше 1200мм.

5) Применять отсосы с поддувом при ширине ванны более 1500мм. Когда поверхность раствора совершенно гладкая, нет выступающих частей, отсутствует оперция окунания.

Эффективность улавливания вредных вкществ зависит от равномерности всасывания по длине щели. Задача расчета бортовых отсосов сводится к:

1) выбору конструкции

2) определению объемов отсасываемого воздуха

разработано несколько видов расчета бортовых отсосов:

метод М.М. Баранова объемный расход воздуха для бортовых отсосов определяется по формуле:

где а – табличное значение удельного расхода воздуха в зависимостьи от длинны ванны, x – поправочный коэффициент на глубину уровня жидкости в ванне, S – поправочный коэффициент на подвижность воздуха в помещении, l – длинна ванны.

Бортовой отсос со сдувом это простой однобортовой отсос активированный воздухом при помощи струи направленной на отсос вдоль зеркала ванны, чтобы она налегала на него, при этом струя становится более дальнобойной и расход в ней уменьшается, объем воздуха на сдув равен L=300kB 2 l