Нервные волокна. Органогенез: гистофизиологическая дифференцировка

Обеспечивается олигодендроцитами. Каждый олигодендроглиоцит образует несколько «ножек», каждая из которых оборачивает часть какого-либо аксона. В результате один олигодендроцит связан с несколькими нейронами. Перехваты Ранвье здесь шире, чем на периферии. Согласно исследованию 2011 г. мощную миелиновую изоляцию в мозге получают наиболее активные аксоны, что позволяет им далее работать ещё эффективнее. Важную роль в этом процессе играет сигнализатор глутамат.

в миелинизированные волокна в НС проводят импульс быстрее, чем немиелинизоровнные

Миелиновая оболочка - это не клеточная мембрана. Оболочку образуют шванновские клетки, типа рулета, они создают области с высоким сопротивлением, и ослабляют ток утечки из аксона. Получается, что потенциал как бы перескакивает от перехваток перехвату, от этого и скорость проведения импульса становится выше.

8. Си́напс (греч. σύναψις, от συνάπτειν - обнимать, обхватывать, пожимать руку) - место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками , причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться.

Типичный синапс - аксо-дендритический химический. Такой синапс состоит из двух частей: пресинаптической , образованной булавовидным расширением окончаниема ксона передающей клетки и постсинаптической , представленной контактирующим участком цитолеммы воспринимающей клетки (в данном случае - участком дендрита). Синапс представляет собой пространство, разделяющее мембраны контактирующих клеток, к которым подходят нервные окончания. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.

9. Химический синапс - особый тип межклеточного контакта между нейроном и клеткой-мишенью. Состоит из трёх основных частей: нервного окончания с пресинаптической мембраной , постсинаптической мембраны клетки-мишени и синаптической щели между ними.

электрические - клетки соединяются высокопроницаемыми контактами с помощью особых коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе - 3,5 нм (обычное межклеточное - 20 нм).Так как сопротивление внеклеточной жидкости мало(в данном случае), импульсы проходят не задерживаясь через синапс. Электрические синапсы обычно бывают возбуждающими.

При деполяризации пресинаптической терминали открываются потенциал-чувствительные кальциевые каналы, ионы кальция входят в пресинаптическую терминаль и запускают механизм слияния синаптических пузырьков с мембраной. В результате медиатор выходит в синаптическую щель и присоединяется к белкам-рецепторам постсинаптической мембраны, которые делятся на метаботропные и ионотропные. Первые связаны с G-белком и запускают каскад реакций внутриклеточной передачи сигнала. Вторые связаны с ионными каналами, которые открываются при связывании с ними нейромедиатора, что приводит к изменению мембранного потенциала. Медиатор действует в течение очень короткого времени, после чего разрушается специфическим ферментом. Например, в холинэргических синапсах фермент, разрушающий медиатор в синаптической щели - ацетилхолинэстераза. Одновременно часть медиатора может перемещаться с помощью белков-переносчиков через постсинаптическую мембрану (прямой захват) и в обратном направлении через пресинаптическую мембрану (обратный захват). В ряде случаев медиатор также поглощается соседними клетками нейроглии.


10. Нервно-мышечный синапс (мионевральный синапс) - эффекторное нервное окончание на скелетном мышечном волокне.

Нервный отросток проходя через сарколемму мышечного волокна утрачивает миелиновую оболочку и образует сложный аппарат с плазматической мембраной мышечного волокна, образующийся из выпячиваний аксона и цитолеммы мышечного волокна, создавая глубокие «карманы». Синаптическая мембрана аксона и постсинаптическая мембрана мышечного волокна разделены синаптической щелью. В этой области мышечное волокно не имеет поперечной исчерченности, характерно скопление митохондрий и ядер. Терминали аксонов содержат большое количество митохондрий и синаптических пузырьков с медиатором (ацетилхолином).

1. Пресинаптическое окончание
2. Сарколемма
3. Синаптический пузырек
4. Никотиновый ацетилхолиновый рецептор
5. Митохондрия

11. Нейромедиа́торы (нейротрансмиттеры , посредники ) - биологически активные химические вещества, посредством которых осуществляется передача электрического импульса с нервной клетки через синаптическое пространство между нейронами . Нервный импульс, поступающий в пресинаптическое окончание, вызывает освобождение в синаптическую щель медиатора. Молекулы медиаторов реагируют со специфическими рецепторными белками клеточной мембраны, инициируя цепь биохимических реакций, вызывающих изменение трансмембранного тока ионов, что приводит к деполяризации мембраны и возникновению потенциала действия.

Нейромедиаторы являются, как и гормоны, первичными мессенджерами, но их высвобождение и механизм действия в химических синапсах сильно отличается от такового гормонов. В пресинаптической клетке везикулы, содержащие нейромедиатор, высвобождают его локально в очень маленький объём синаптической щели. Высвобожденный нейромедиатор затем диффундирует через щель и связывается с рецепторами на постсинаптической мембране. Диффузия является медленным процессом, но пересечение такой короткой дистанции, которая разделяет пре- и постсинаптические мембраны (0,1 мкм или меньше), происходит достаточно быстро и позволяет осуществлять быструю передачу сигнала между нейронами или между нейроном и мышцей.

Недостаток какого-либо из нейромедиаторов может вызывать разнообразные нарушения, например, различные виды депрессии. Также считается , что формирование зависимости от наркотиков и табака связано с тем, что при употреблении этих веществ задействуются механизмы производства нейромедиатора серотонина, а также других нейромедиаторов, блокирующие (вытесняющие) аналогичные естественные механизмы.

Классификация нейромедиаторов:

Традиционно нейромедиаторы относят к 3 группам: аминокислоты, пептиды, моноамины (в том числе катехоламины)

Аминокислоты :

§ Глутаминовая кислота (глутамат)

Катехоламины :

§ Адреналин

§ Норадреналин

§ Дофамин

Другие моноамины :

§ Серотонин

§ Гистамин

А также :

§ Ацетилхолин

§ Анандамид

§ Аспартат

§ Вазоактивный интестинальный пептид

§ Окситоцин

§ Триптамин

12. Нейроглия, или просто глия - сложный комплекс вспомогательных клеток нервной ткани, общный функциями и, частично, происхождением (исключение - микроглия).Глиальные клетки составляют специфическое микроокружение для нейронов, обеспечивая условия для генерации и передачи нервных импульсов, обеспечивают тканевый гомеостаз и нормальное функц-е клетки, а также осуществляя часть метаболических процессов самого нейрона. Основные функции Нейроглии:

Создание между кровью и нейронами гемато-энцефалического барьера, необходимого как для защиты нейронов, так и главным образом для регуляции поступления веществ в ЦНС и их выведения в кровь;

Обеспечение реактивных свойств нервной ткани (образование рубцов после травмы, участие в реакциях воспаления, в образовании опухолей)

Фагоцитоз (удаление погибших нейронов)

Изоляция синапсов (контактные участки между нейронами)

Источники онтогенетического развития нейроглии:появилась в процессе развития нервной системы из материала нервной трубки.

13. Макроглия (от макро... и греч. glнa - клей), клетки в мозге, заполняющие пространства между нервными клетками - нейронами - и окружающими их капиллярами. М. - основная ткань нейроглии, часто с ней отождествляемая; в отличие от микроглии, имеет общее с нейронами происхождение из нервной трубки . Более крупные клетки М., образующие астроглию и эпендиму, участвуют в деятельности гемато-энцефалического барьера, в реакции нервной ткани на повреждения и инфекции. Более мелкие, так называемые сателлитные клетки нейронов (олигодендроглия), участвуют в образовании миелиновых оболочек отростков нервных клеток - аксонов, обеспечивают нейроны питательными веществами, особенно в период усиленной активности мозга.

14. Эпе́ндима - тонкая эпителиальная мембрана, выстилающая стенки желудочков мозга и спинномозговой канал. Эпендима состоит из эпендимных клеток или эпендимоцитов, относящихся к одному из четырёх типов нейроглии. В эмбриогенезе эпендима образуется из эктодермы.

Нервные волокна.

Отростки нервных клеток, покрытые оболочками, называются волокнами. По строению оболочек различают миелиновые и безмиелиновые нервные волокна. Отросток нервной клетки в нервном волокне называют осевым цилиндром, или аксоном.

В ЦНС оболочки отростков нейронов образуют отростки олигодендроглиоцитов, а в перефирической – нейролеммоциты.

Безмиелиновые нервные волокна располагаются преимущественно в периферической вегетативной нервной системе. Их оболочка представляет собой тяж нейролеммоцитов, в который погружены осевые цилиндры. Безмиелиновое волокно, в котором находятся несколько осевых цилиндров, называется волокном кабельного типа. Осевые цилиндры из одного волокна могут переходить в соседнее.

Процесс образования безмиелинового нервного волокна происходит следующим образом. При появлении отростка в нервной клетке рядом с ним появляется тяж нейролеммоцитов. Отросток нервной клетки (осевой цилиндр) начинает погружаться в тяж нейролеммоцитов, увлекая плазмолемму вглубь цитоплазмы. Сдвоенная плазмолемма называется мезаксоном. Таким образом, осевой цилиндр располагается на дне мезаксона (подвешен на мезаксоне). Снаружи безмиелиновое волокно покрыто базальной мембраной.

Миелиновые нервные волокна располагаются преимущественно в соматической нервной системе, имеют значительно больший диаметр по сравнению с безмиелиновыми-достигает до 20 мкм. Осевой цилиндр тоже более толстый. Миелиновые волокна окрашиваются осмием в черно-коричневый цвет. После окрашивания в оболочке волокна видны 2 слоя: внутренний миелиновый и наружный, состоящий из цитоплазмы, ядра и плазмолеммы, который называется неврилеммой. В центре волокна проходит неокрашенный (светлый) осевой цилиндр.

В миелиновом слое оболочки видны косые светлые насечки (incisio myelinata). По ходу волокна имеются сужения, через которые не переходит миелиновый слой оболочки. Эти сужения называются узловыми перехватами (nodus neurofibra). Через эти перехваты проходит только неврилемма и базальная мембрана, окружающая миелиновое волокно. Узловые перехваты являются границей между двумя смежными леммоцитами. Здесь от нейролеммоцита отходят короткие выросты диаметром около 50 нм, заходящие между концами таких же отростков смежного нейролеммоцита.

Участок миелинового волокна, расположенный между двумя узловыми перехватами, называется межузловым, или интернодальным, сегментом. В пределах этого сегмента рас-полагается всего лишь 1 нейролеммоцит.

Миелиновый слой оболочки - это мезаксон, навернутый на осевой цилиндр.

Формирование миелинового волокна. Вначале процесс образования миелинового волокна сходен с процессом образованием безмиелинового, т. е. осевой цилиндр погружается в тяж нейролеммоцитов и образуется мезаксон. После этого мезаксон удлиняется и навертывается на осевой цилиндр, оттесняя цитоплазму и ядро на периферию. Вот этот, навернутый на осевой цилиндр, мезаксон и есть миелиновый слой, а наружный слой оболочки - это оттесненные к периферии ядра и цитоплазма нейролеммоцитов.

Миелиновые волокна отличаются от безмиелиновых по строению и функции. В частности, скорость движения им¬пульса по безмиелиновому нервному волокну составляет 1-2 м в секунду, по миелиновому - 5-120 м в секунду. Объясняется это тем, что по миелиновому волокну импульс движется сальтоторно (скачкообразно). Это значит, что в пределах узлового перехвата импульс движется по неврилемме осевого цилиндра в виде волны деполяризации, т. е. медленно; в пределах межузлового сегмента импульс движется как электрический ток, т. е. быстро. В то же время импульс по безмиелиновому волокну движется только в виде волны деполяризации.

На электронограмме хорошо видно отличие миелинового волокна от безмиелинового - мезаксон послойно навернут на осевой цилиндр.

Нервные волокна.

Отростки нервных клеток, покрытые оболочками, называются волокнами. По строению оболочек различают миелиновые и безмиелиновые нервные волокна. Отросток нервной клетки в нервном волокне называют осевым цилиндром, или аксоном.

В ЦНС оболочки отростков нейронов образуют отростки олигодендроглиоцитов, а в перефирической – нейролеммоциты.

Безмиелиновые нервные волокна располагаются преимущественно в периферической вегетативной нервной системе. Их оболочка представляет собой тяж нейролеммоцитов, в который погружены осевые цилиндры. Безмиелиновое волокно, в котором находятся несколько осевых цилиндров, называется волокном кабельного типа. Осевые цилиндры из одного волокна могут переходить в соседнее.

Процесс образования безмиелинового нервного волокна происходит следующим образом. При появлении отростка в нервной клетке рядом с ним появляется тяж нейролеммоцитов. Отросток нервной клетки (осевой цилиндр) начинает погружаться в тяж нейролеммоцитов, увлекая плазмолемму вглубь цитоплазмы. Сдвоенная плазмолемма называется мезаксоном. Таким образом, осевой цилиндр располагается на дне мезаксона (подвешен на мезаксоне). Снаружи безмиелиновое волокно покрыто базальной мембраной.

Миелиновые нервные волокна располагаются преимущественно в соматической нервной системе, имеют значительно больший диаметр по сравнению с безмиелиновыми-достигает до 20 мкм. Осевой цилиндр тоже более толстый. Миелиновые волокна окрашиваются осмием в черно-коричневый цвет. После окрашивания в оболочке волокна видны 2 слоя: внутренний миелиновый и наружный, состоящий из цитоплазмы, ядра и плазмолеммы, который называется неврилеммой. В центре волокна проходит неокрашенный (светлый) осевой цилиндр.

В миелиновом слое оболочки видны косые светлые насечки (incisio myelinata). По ходу волокна имеются сужения, через которые не переходит миелиновый слой оболочки. Эти сужения называются узловыми перехватами (nodus neurofibra). Через эти перехваты проходит только неврилемма и базальная мембрана, окружающая миелиновое волокно. Узловые перехваты являются границей между двумя смежными леммоцитами. Здесь от нейролеммоцита отходят короткие выросты диаметром около 50 нм, заходящие между концами таких же отростков смежного нейролеммоцита.

Участок миелинового волокна, расположенный между двумя узловыми перехватами, называется межузловым, или интернодальным, сегментом. В пределах этого сегмента рас-полагается всего лишь 1 нейролеммоцит.

Миелиновый слой оболочки - это мезаксон, навернутый на осевой цилиндр.

Формирование миелинового волокна. Вначале процесс образования миелинового волокна сходен с процессом образованием безмиелинового, т. е. осевой цилиндр погружается в тяж нейролеммоцитов и образуется мезаксон. После этого мезаксон удлиняется и навертывается на осевой цилиндр, оттесняя цитоплазму и ядро на периферию. Вот этот, навернутый на осевой цилиндр, мезаксон и есть миелиновый слой, а наружный слой оболочки - это оттесненные к периферии ядра и цитоплазма нейролеммоцитов.

Миелиновые волокна отличаются от безмиелиновых по строению и функции. В частности, скорость движения им¬пульса по безмиелиновому нервному волокну составляет 1-2 м в секунду, по миелиновому - 5-120 м в секунду. Объясняется это тем, что по миелиновому волокну импульс движется сальтоторно (скачкообразно). Это значит, что в пределах узлового перехвата импульс движется по неврилемме осевого цилиндра в виде волны деполяризации, т. е. медленно; в пределах межузлового сегмента импульс движется как электрический ток, т. е. быстро. В то же время импульс по безмиелиновому волокну движется только в виде волны деполяризации.

На электронограмме хорошо видно отличие миелинового волокна от безмиелинового - мезаксон послойно навернут на осевой цилиндр.

Анатомо-физиологические особенности нервной системы у детей

Головной мозг ребенка

Развитие головного мозга ребенка

У новорождённых относительная величина головного мозга больше, чем у взрослых: его масса составляет около 1/8 массы тела (в среднем 400 г), в то время как у взрослых - 1/40 массы тела.

Крупные извилины и борозды уже хорошо выражены, хотя и имеют меньшую глубину и высоту. Мелких борозд и извилин (третичных) мало, они постепенно формируются в течение первых лет жизни. Клетки серого вещества, проводящие системы (пирамидный путь и др.) полностью не сформированы, дендриты короткие, малоразветвлённые. По мере развития борозд и извилин (увеличивается их количество, изменяется форма и топография) происходит и становление миело и цитоархитектоники разных отделов головного мозга. Особенно интенсивно этот процесс происходит в первые 6 лет жизни. Анатомически мозговые структуры созревают до уровня взрослых лишь к 20 годам.

Считают, что количество нервных клеток больших полушарий после рождения не увеличивается, а идут лишь их дифференцировка и увеличение размеров и объёма. Созревание клеток продолговатого мозга заканчивается в основном к 7 годам. Позднее всего, в период полового созревания, заканчивается дифференцировка клеточных элементов серого вещества гипоталамической области.

Подкорковые образования двигательного анализатора, интегрирующие деятельность экстрапирамидной системы, формируются уже к рождению. Однако движения новорождённого хаотичны, не целенаправленны, имеют атетозоподобный характер, преобладает тонус мышц сгибателей. Этот уровень организации движений называют пирамидностриарным. Мозжечок и неостриатум ещё недостаточно развиты. Координация движений начинает постепенно развиваться уже после рождения. Вначале это касается глазных мышц, что проявляется у ребёнка на 2-3й неделе жизни фиксацией взора на ярком предмете. Затем ребёнок начинает следить за движущейся игрушкой, поворачивая голову, что свидетельствует о начальной координации движений шейных мышц.

Твёрдая мозговая оболочка у новорождённых относительно тонкая, сращена с костями основания черепа на значительном протяжении. Мягкая, богатая сосудами и клетками, и паутинная оболочки мозга очень тонкие. Субарахноидальное пространство, образованное этими листками, имеет незначительный объём.

Спинной мозг ребенка

Особенности спинного мозга у детей

Спинной мозг у новорождённых по сравнению с головным морфологически представляет собой более зрелое образование. Это определяет его более совершенные функции и наличие спинальных автоматизмов к моменту рождения. К 2-3 годам заканчивается миелинизация спинного мозга и корешков спинного мозга, образующих "конский хвост". Спинной мозг растёт в длину медленнее позвоночника. У новорождённого он оканчивается на уровне L m , в то время как у взрослого - у верхнего края L". Окончательное соотношение спинного мозга и позвоночника устанавливается к 5-6 годам.

Миелинизация нервных волокон

Процесс миелинизации нервных волокон

Важный показатель созревания нервных структур - миелинизация нервных волокон. Она развивается в центробежном направлении от клетки к периферии. Фило и онтогенетически более старые системы миелинизируются раньше. Так, миелинизация в спинном мозге начинается на 4-м месяце внутриутробного развития, и у новорождённого она практически заканчивается. При этом вначале миелинизируются двигательные волокна, а затем - чувствительные. В разных отделах нервной системы миелинизация происходит неодновременно. Сначала миелинизируются волокна, осуществляющие жизненно важные функции (сосания, глотания, дыхания и т.д.). Черепные нервы миелинизируются более активно в течение первых 3-4 мес жизни. Их миелинизация завершается приблизительно к году жизни, за исключением блуждающего нерва. Аксоны пирамидного пути покрываются миелином в основном к 5-6 мес жизни, окончательно - к 4 годам, что приводит к постепенному увеличению объёма движений и их точности.

Развитие условно-рефлекторной деятельности у детей

Один из основных критериев нормального развития мозга новорождённого - состояние основных безусловных рефлексов, так как на их базе формируются условные рефлексы. Кора головного мозга даже у новорождённого подготовлена для формирования условных рефлексов. Вначале они формируются медленно. На 23-й неделе жизни вырабатывается условный вестибулярный рефлекс на положение для кормления грудью и покачивание в люльке. Затем идёт быстрое накопление условных рефлексов, образующихся со всех анализаторов и подкрепляющихся пищевой доминантой. Условный рефлекс на звуковой раздражитель в виде защитного (мигательного) движения век образуется к концу 1го месяца жизни, а пищевой рефлекс на звуковой раздражитель - на 2м. В это же время формируется и условный рефлекс на свет.

В целом уже на самых ранних этапах развития созревание нервной системы осуществляется по принципу системогенеза с формированием в первую очередь отделов, обеспечивающих жизненно необходимые реакции, отвечающие за первичную адаптацию ребёнка после рождения (пищевые, дыхательные, выделительные, защитные).

Исследование нервной системы у детей

Методика исследования нервной системы у детей

При оценке развития и состояния нервной системы учитывают жалобы, результаты расспроса матери, а в старшем возрасте - и ребёнка. Обращают внимание также на крик, двигательную активность, мышечный тонус, безусловные рефлексы, патологические неврологические знаки, психомоторное развитие.

Медицинский осмотр ребенка

При осмотре новорождённого обращают внимание на стигмы дизэмбриогенеза (малые аномалии развития), окружность и форму головы, состояние черепных швов и родничков, наличие кефалогематом, родовой опухоли, кровоизлияний в склеры глаз. У более старших детей оценивают поведение и реакцию на окружающее (безразличие, сонливость, апатия, страх, возбуждение, эйфория), а также настроение, выражение лица, мимику, жесты и т.д.

Крик новорождённого ребенка

Начало осмотра нередко сопровождается громким криком. Длительность крика здорового ребёнка адекватна действию раздражителя (голод, тактильные или болевые воздействия, мокрые пелёнки и др.). Вскоре после устранения дискомфорта крик прекращается.

Нервная система и нервнопсихическое развитие

Нервная система у детей участвует во взаимодействии организма с окружающей средой, регулирует все его внутренние процессы и их постоянство [температуру тела, биохимические реакции, артериальное давление (АД), питание тканей, обеспечение их кислородом и т.д.], т.е. гомеостаз.

3.5. Нервные волокна. Возрастные особенности нервных волокон

Нервные волокна – это отростки нервных клеток, покрытые оболочками. По морфологическому признаку нервные волокна подразделяются на 2 группы:

мякотные или миелинизированные

безмякотные, не имеющие миелиновой оболочки.

Основу волокна составляет осевой цилиндр – отросток нейрона, который состоит из тончайших нейрофибрилл. Они участвуют
в процессах роста волокна, выполняют опорную функцию, а также обеспечивают перенос активных веществ, синтезирующихся в теле,
к отросткам. В безмякотных нервных волокнах осевой цилиндр покрыт щванновской оболочкой. К этой группе волокон относятся тонкие постганглионарные волокна вегетативной нервной системы.

В мякотных нервных волокнах осевой цилиндр покрыт миелиновой и шванновской оболочками (рис. 3.3.1). К этой группе волокон относятся чувствительные, двигательные волокна, а также тонкие преганглионарные волокна вегетативной нервной системы.

Миелиновая оболочка покрывает осевой цилиндр не «сплошным футляром», а только определенные его участки. Участки волокна, лишенные миелиновой оболочки, называются перехватами Ранвье . Длина участков, покрытых миелиновой оболочкой, равна 1-2 мм, длина перехватов 1-2 микронам (мкм). Миелиновая оболочка выполняет трофическую и изолирующую функции (обладает высоким сопротивлением по отношению к биоэлектрическому току, пробегающему по волокну). Длина межперехватных участков – «изоляторов» относительно пропорциональна диаметру волокна (в толстых чувствительных и двигательных волокнах она больше, чем в тонких волокнах). Перехваты Ранвье выполняют функцию ретрансляторов (генерируют, проводят и усиливают возбуждение).

По функциональному признаку нервные волокна подразделяются на: афферентные (чувствительные) и эфферентные (двигательные). Скопление нервных волокон, покрытых общей соединительнотканной оболочкой называется нервом. Различают чувствительные, двигательные и смешанные нервы, последние в своем составе содержат чувствительные и двигательные волокна.

Функцией нервных волокон является проведение нервных импульсов от рецепторов в ЦНС и из ЦНС – к рабочим органам.
Распространение импульсов по нервным волокнам осуществляется благодаря электрическим токам (потенциалам действия), которые возникают между возбужденным и невозбужденным участками нервного волокна. В безмякотных нервных волокнах шванновская оболочка электрически активна на всем протяжении волокна и электрический ток пробегает через каждый ее участок (имеет вид непрерывно бегущей волны), поэтому скорость распространения возбуждения
невелика (0,5–2,0 м/сек). В мякотных нервных волокнах электрически активны только перехваты, поэтому электрический ток «перепрыгивает» от одного перехвата к другому, минуя миелиновую оболочку. Такое распространение возбуждения называется сальтаторным (скачкообразным), что увеличивает скорость проведения (3–120 м/сек.) и уменьшает энергетические затраты.

Для проведения возбуждения по нервным волокнам характерны определенные закономерности:

двустороннее проведение нервных импульсов – возбуждение по волокну проводится в обоих направлениях от места раздражения;

изолированное проведение возбуждения – нервные импульсы, пробегающие по одному нервному волокну, на соседние волокна, проходящие в составе нерва, не распространяются благодаря миелиновой оболочке;

нервные волокна относительно неутомляемы , так как при проведении возбуждения волокно расходует сравнительно мало энергии и ресинтез энергетических веществ компенсирует их расходы. Но при длительном проведении возбуждения происходит снижение физиологических свойств волокна (возбудимости, проводимости);

для проведения возбуждения необходимо анатомическая
и функциональная целостность
нервного волокна.

Возрастные особенности нервных волокон. Миелинизация аксонов начинается на 4-м месяце эмбрионального развития. Аксон погружается в шванновскую клетку, которая несколько раз обкручивается вокруг него, а слои мембраны, сливаясь друг с другом, образуют компактную миелиновую оболочку (рис. 3.5.1).

Рис. 3.5.1

К моменту рождения миелиновой оболочкой покрыты спинномозговые двигательные волокна, почти все проводящие пути спинного мозга, за исключением пирамидных путей, частично черепно-мозговые нервы. Наиболее интенсивно, но неравномерно миелинизация нервных волокон происходит в течение первых 3-6 месяцев жизни, вначале миелинизируются периферические афферентные и смешанные нервы, затем – проводящие пути ствола головного мозга, позднее – нервные волокна коры головного мозга. Плохая «изоляция» нервных волокон в первые месяцы жизни является причиной несовершенства координации функций. В последующие годы у детей продолжается рост осевого цилиндра, увеличение толщины и длины миелиновой оболочки. При неблагоприятных условиях окружающей среды миелинизация замедляется до 5-10 лет, что затрудняет регуляцию и координацию функций организма. Гипофункция щитовидной железы, дефицит ионов меди в пище, различные отравления (алкоголь, никотин) угнетают и даже могут полностью подавить миелинизацию, что приводит к появлению у детей умственной отсталости различной степени.