Нервные волокна. Миелинизация нервных волокон

Рис. 7. Миелиновые нервные волокна из седалищного нерва лягушки, обработанного тетраоксидом осмия: 1 - слой миелина; 2 - соединительная ткань; 3 - нейролеммоцит; 4 - насечки миелина; 5 - перехват узла

Рис. 8. Межмышечное нервное сплетение кишечника кошки: 1 - безмиелиновые нервные волокна; 2 - ядра нейролеммоцитов

Отростки нервных клеток обычно одеты глиальными оболочками и вместе с ними называются нервными волокнами. Так как в различных отделах нервной системы оболочки нервных волокон значительно отличаются друг от друга по своему строению, то в соответствии с особенностями их строения все нервные волокна делятся на две основные группы - миелиноеые (рис.7) и безмиелиновые волокна (рис.8). Те и другие состоят из отростка нервной клетки (аксона или дендрита), который лежите в центре волокна и поэтому называется осевым цилиндром, и оболочки, образованной клетками олигодендроглии, которые здесь называются леммоцитами (шванновскими клетками).

Безмиелиновые нервные волокна

Находятся они преимущественно в составе вегетативной нервной системы. Клетки олигодендроглии оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи цитоплазмы, в которых на определенном расстоянии друг от друга лежат овальные ядра. В безмиелиновых нервных волокнах внутренних органов часто в одной такой клетке располагается не один, а несколько (10-20) осевых цилиндров, принадлежащих различным нейронам. Они могут, покидая одно волокно, переходить в смежное. Такие волокна, содержащие несколько осевых цилиндров, называются волокнами кабельного типа. При электронной микроскопии безмиелиновых нервных волокон видно, что по мере погружения осевых цилиндров в тяж леммоцитов последние одевают их как муфта.

Оболочка леммоцитов при этом прогибается, плотно охватывает осевые цилиндры и, смыкаясь над ними, образует глубокие складки, на дне которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки оболочки леммоцита образуют двойную мембрану - мезаксон, на которой как бы подвешен осевой цилиндр (рис.9).

Так как оболочка леммоцитов очень тонка, то ни мезаксона, ни границ этих клеток под световым микроскопом нельзя рассмотреть, и оболочка безмиелиновых нервных волокон в этих условиях выявляется как однородный тяж цитоплазмы, одевающий осевые цилиндры. С поверхности каждое нервное волокно покрыто базальной мембраной.

Рис. 9. Схема продольного(А) и поперечного (Б) сечения безмиелиновых нервных волокон: 1 - ядро леммоцита; 2 - осевой цилиндр; 3 - митохондрии; 4 - граница леммоцитов; 5 - мезаксон.

Миелиновые нервные волокна

Миелиновые нервные волокна значительно толще безмиелиновых. Диаметр поперечного сечения их колеблется от 1 до 20 мк. Они также состоят из осевого цилиндра, одетого оболочкой из леммоцитов, но диаметр осевых цилиндров этого типа волокон значительно больше, а оболочка сложнее. В сформированном миелиновом волокне принято различать два слоя оболочки: внутренний, более толстый, - миелиновый слой (рис.10), и наружный, тонкий, состоящий из цитоплазмы леммоцитов и их ядер.

Миелиновый слой содержит в своем составе липоиды, а поэтому при обработке волокна осмиевой кислотой он интенсивно закрашивается в темно-коричневый цвет. Все волокно в этом случае представляется однородным цилиндром, в котором на определенном расстоянии друг от друга располагаются косо ориентированные светлые линии - насечки миелина (incision myelini), ил и насечки Шмидта-Лантермана. Через некоторые интервалы (от нескольких сотен микронов до нескольких миллиметров) волокно резко истончается, образуя сужения - узловые перехваты, или перехваты Ранвье. Перехваты соответствуют границе смежных леммоцитов. Отрезок волокна, заключенный между смежными перехватами, называется межузловым сегментом, а его оболочка представлена одной глиальной клеткой.

В процессе развития миелинового волокна осевой цилиндр, погружаясь в леммоцит, прогибает его оболочку, образуя глубокую складку.

Рис. 10. Схема нейрона. 1 - тело нервной клетки; 2 - осевой цилиндр; 3 - глиальная оболочка; 4 - ядро леммоцита; 5 - миелиновый слой; 6 - насечка; 7 - перехват Ранвье; 8 - нервное волокно, лишенное миелинового слоя: 9 - двигательное окончание; 10 - миелиновые нервные волокна, обработанные осмиевой кислотой.

По мере погружения осевого цилиндра оболочка леммоцита в области щели сближается и ее два листка соединяются друг с другом своей внешней поверхностью, образуя двойную мембрану - мезаксон (рис.11).

При дальнейшем развитии миелинового волокна мезаксон удлиняется и концентрически наслаивается на осевой цилиндр, вытесняя цитоплазму леммоцита и образуя вокруг осевого цилиндра плотную слоистую зону - миелиновый слой (рис.12). Так как оболочка леммоцита состоит из липидов и белков, а мезаксон представляет собой ее двойной листок, то естественно, что миелиновая оболочка, образованная его завитками, интенсивно окрашивается осмиевой кислотой. В соответствии с этим под электронным микроскопом каждый завиток мезаксона виден как слоистая структура, построенная из белков и липидов, расположение которых типично для мембранных структур клеток. Светлый слой имеет ширину около 80-120 ? и соответствует липоидным слоям двух листков мезаксона. Посредине и по поверхности его видны тонкие темные линии, образованные молекулами белка.

Рис. 11.

Шванновской оболочкой называется периферическая зона волокна, содержащая оттесненную сюда цитоплазму леммоцитов (шванновских клеток) и их ядра. Эта зона при обработке волокна осмиевой кислотой остается светлой. В области насечек между завитками мезаксона имеются значительные прослойки цитоплазмы, благодаря чему клеточные мембраны располагаются на некотором расстоянии друг от друга. Больше того, как видно на рис.188, листки мезаксона в этой области также лежат неплотно. В связи с этим при осмировании волокна эти участки не окрашиваются.

Рис. 12. Схема субмикроскопического строения миелинового нервного волокна: 1 - аксон; 2 - мезаксон; 3 - насечка миелина; 4 - узел нервного волокна; 5 - цитоплазма нейролеммоцита; 6 - ядро нейролеммоцита; 7 - нейролемма; 8 - эндоневрий

На продольном сечении вблизи перехвата видна область, в которой завитки мезаксона последовательно контактируют с осевым цилиндром. Место прикрепления самых глубоких завитков его наиболее удалено от перехвата, а все последующие завитки закономерно расположены ближе к нем у (см. рис.12). Это легко понять, если представить себе, что закручивание мезаксона идет в процессе роста осевого цилиндра и одевающих его леммоцитов. Естественно, что первые завитки мезаксона оказываются короче, чем последние. Края двух смежных леммоцитов в области перехвата образуют пальцеобразные отростки, диаметр которых равен 500 ?. Длина отростков различна. Переплетаясь между собой, они образуют вокруг осевого цилиндра своеобразный воротничок и попадают на срезах то в поперечном, то в продольном направлении. В толстых волокнах, у которых область перехвата относительно коротка, толщина воротничка из отростков шванновских клеток больше, чем в тонких волокнах. Очевидно, аксон тонких волокон в перехвате более доступен для внешних воздействий. Снаружи миелиновое нервное волокно покрыто базальной мембраной, связанной с плотными тяжами коллагеновых фибрилл, ориентированных продольно и не прерывающихся в перехвате - невралеммой.

Функциональное значение оболочек миелинового нервного волокна в проведении нервного импульса в настоящее время недостаточно изучено.

Осевой цилиндр нервных волокон состоит из нейроплазмы - бесструктурной цитоплазмы нервной клетки, содержащей продольно ориентированные нейрофиламенты и нейротубулы. В нейроплазме осевого цилиндра лежат митохондрии, которых больше в непосредственной близости к перехватам и особенно много в концевых аппаратах волокна.

С поверхности осевой цилиндр покрыт мембраной - аксолеммой, обеспечивающей проведение нервного импульса. Сущность этого процесса сводится к быстрому перемещению локальной деполяризации мембраны осевого цилиндра по длине волокна. Последнее определяется проникновением в осевой цилиндр ионов натрия (Nа +), что меняет знак заряда внутренней поверхности мембраны на положительный. Это, в свою очередь, повышает проходимость ионов натрия в смежном участке и выход ионов калия (К +) на внешнюю поверхность мембраны в деполяризованном участке, в котором восстанавливается при этом исходный уровень разности потенциалов. Скорость движения волны деполяризации поверхностной мембраны осевого цилиндра определяет быстроту передачи нервного импульса. Известно, что волокна с толстым осевым цилиндром проводят раздражение быстрее тонких волокон. Скорость передачи импульса миелиновыми волокнами больше, чем безмиелиновыми. Тонкие волокна, бедные миелином, и безмиелиновые волокна проводят нервный импульс со скоростью 1-2 м/сек, тогда как толстые миелиновые - 5-120 м/сек.

3.5. Нервные волокна. Возрастные особенности нервных волокон

Нервные волокна – это отростки нервных клеток, покрытые оболочками. По морфологическому признаку нервные волокна подразделяются на 2 группы:

мякотные или миелинизированные

безмякотные, не имеющие миелиновой оболочки.

Основу волокна составляет осевой цилиндр – отросток нейрона, который состоит из тончайших нейрофибрилл. Они участвуют
в процессах роста волокна, выполняют опорную функцию, а также обеспечивают перенос активных веществ, синтезирующихся в теле,
к отросткам. В безмякотных нервных волокнах осевой цилиндр покрыт щванновской оболочкой. К этой группе волокон относятся тонкие постганглионарные волокна вегетативной нервной системы.

В мякотных нервных волокнах осевой цилиндр покрыт миелиновой и шванновской оболочками (рис. 3.3.1). К этой группе волокон относятся чувствительные, двигательные волокна, а также тонкие преганглионарные волокна вегетативной нервной системы.

Миелиновая оболочка покрывает осевой цилиндр не «сплошным футляром», а только определенные его участки. Участки волокна, лишенные миелиновой оболочки, называются перехватами Ранвье . Длина участков, покрытых миелиновой оболочкой, равна 1-2 мм, длина перехватов 1-2 микронам (мкм). Миелиновая оболочка выполняет трофическую и изолирующую функции (обладает высоким сопротивлением по отношению к биоэлектрическому току, пробегающему по волокну). Длина межперехватных участков – «изоляторов» относительно пропорциональна диаметру волокна (в толстых чувствительных и двигательных волокнах она больше, чем в тонких волокнах). Перехваты Ранвье выполняют функцию ретрансляторов (генерируют, проводят и усиливают возбуждение).

По функциональному признаку нервные волокна подразделяются на: афферентные (чувствительные) и эфферентные (двигательные). Скопление нервных волокон, покрытых общей соединительнотканной оболочкой называется нервом. Различают чувствительные, двигательные и смешанные нервы, последние в своем составе содержат чувствительные и двигательные волокна.

Функцией нервных волокон является проведение нервных импульсов от рецепторов в ЦНС и из ЦНС – к рабочим органам.
Распространение импульсов по нервным волокнам осуществляется благодаря электрическим токам (потенциалам действия), которые возникают между возбужденным и невозбужденным участками нервного волокна. В безмякотных нервных волокнах шванновская оболочка электрически активна на всем протяжении волокна и электрический ток пробегает через каждый ее участок (имеет вид непрерывно бегущей волны), поэтому скорость распространения возбуждения
невелика (0,5–2,0 м/сек). В мякотных нервных волокнах электрически активны только перехваты, поэтому электрический ток «перепрыгивает» от одного перехвата к другому, минуя миелиновую оболочку. Такое распространение возбуждения называется сальтаторным (скачкообразным), что увеличивает скорость проведения (3–120 м/сек.) и уменьшает энергетические затраты.

Для проведения возбуждения по нервным волокнам характерны определенные закономерности:

двустороннее проведение нервных импульсов – возбуждение по волокну проводится в обоих направлениях от места раздражения;

изолированное проведение возбуждения – нервные импульсы, пробегающие по одному нервному волокну, на соседние волокна, проходящие в составе нерва, не распространяются благодаря миелиновой оболочке;

нервные волокна относительно неутомляемы , так как при проведении возбуждения волокно расходует сравнительно мало энергии и ресинтез энергетических веществ компенсирует их расходы. Но при длительном проведении возбуждения происходит снижение физиологических свойств волокна (возбудимости, проводимости);

для проведения возбуждения необходимо анатомическая
и функциональная целостность
нервного волокна.

Возрастные особенности нервных волокон. Миелинизация аксонов начинается на 4-м месяце эмбрионального развития. Аксон погружается в шванновскую клетку, которая несколько раз обкручивается вокруг него, а слои мембраны, сливаясь друг с другом, образуют компактную миелиновую оболочку (рис. 3.5.1).

Рис. 3.5.1

К моменту рождения миелиновой оболочкой покрыты спинномозговые двигательные волокна, почти все проводящие пути спинного мозга, за исключением пирамидных путей, частично черепно-мозговые нервы. Наиболее интенсивно, но неравномерно миелинизация нервных волокон происходит в течение первых 3-6 месяцев жизни, вначале миелинизируются периферические афферентные и смешанные нервы, затем – проводящие пути ствола головного мозга, позднее – нервные волокна коры головного мозга. Плохая «изоляция» нервных волокон в первые месяцы жизни является причиной несовершенства координации функций. В последующие годы у детей продолжается рост осевого цилиндра, увеличение толщины и длины миелиновой оболочки. При неблагоприятных условиях окружающей среды миелинизация замедляется до 5-10 лет, что затрудняет регуляцию и координацию функций организма. Гипофункция щитовидной железы, дефицит ионов меди в пище, различные отравления (алкоголь, никотин) угнетают и даже могут полностью подавить миелинизацию, что приводит к появлению у детей умственной отсталости различной степени.

Этот процесс протекает в патогенезе последовательно и упорядрченно в строгом соответствии с эмбриональными, анатомическими и функциональными особенностями систем нервных волокон.
Миелин является совокупностью липоидных и белковых веществ, входящих в состав внутреннего слоя оболочки нервного волокна. Таким образом, миелиновая оболочка представляет собой внутреннюю часть глиальной оболочки нервного волокна, которая содержит миелин. Миелиновая оболочка - белково-липидная мембрана, которая состоит из бимолекулярного липидного слоя, находящегося между двумя мономолекулярными слоями белковых субстанций.
Миелиновая оболочка многократно в несколько слоев закручивается вокруг нервного волокна. С увеличением диаметра нервного волокна количество витков миелиновой оболочки возрастает. Миелиновая оболочка является как бы изоляционным покрытием для биоэлектрических импульсов, которые возникают в нейронах при возбуждении. Она обеспечивает более быстрое проведение биоэлектрических импульсов по нервным волокнам. Этому способствуют так называемые перехваты Ранвье. Перехваты Ранвье - это небольшие просветы нервного волокна, не покрытые миелиновой оболочкой. В центральной нервной системе эти перехваты располагаются приблизительно через 1 мм.
Миелин в центральной нервной системе синтезируется олигодендроцитами. Один олигодендроцит синтезирует миелин примерно для 50 нервных волокон. При этом к каждому аксону примыкает только узкий отросток олигодендроцита.
В процессе спирального закручивания оболочки образуется ламеллярное строение миелина, при этом два гидрофильных слоя поверхностных белков миелина сливаются, между ними образуется гидрофобный слой липидов. Расстояние между пластинками миелина в среднем равняется 12 нм. В настоящее время описано более 20 видов белков миелина. Строение и биохимический состав миелина центральной нервной системы довольно подробно изучены. Миелин, помимо защитной, структурной и изоляторной функций, участвует также в питании нервного волокна. Поражение миелиновой оболочки нервных волокон - демиелинизация - происходит при различных тяжелых заболеваниях, таких как энцефаломиелиты различного генеза, СПИД, рассеянный склероз, болезнь Бехчета, синдром Шегрена и др.

{module директ4}

Миелинизация дистального отдела (у заднего полюса глаза) зрительного нерва начинается только после рождения ребенка. Она происходит в период от 3 нед до нескольких месяцев, уже в период внутриутробной жизни. Это так называемый условно «кабельный период», когда весь комплекс осевых цилиндров - аксонов ганглиозных клеток сетчатки лишен миелиновых оболочек и заключен в одну общую оболочку. При этом сохраняется функция проведения зрительных импульсов, но она очень несовершенна и имеет диффузный характер. Также «кабельные нервы» проводят зрительные импульсы путем обобщения или путем поперечной индукции. В них переход возбуждения с одного волокна без миелиновой оболочки происходит на другое такое же волокно по соприкосновению. Такое проведение импульсов делает невозможным прохождение их из определенных точек сетчатки в определенные зоны корковых анализаторов. Таким образом, в этот период жизни ребенка еще отсутствует четкая ретинотопичность представительства в зрительных центрах. Нервные волокна интракраниальной части зрительного нерва раньше покрываются миелиновой оболочкой - к VIII месяцу внутриглазного развития.
Миелинизация нервных волокон хиазмы и зрительных трактов у новорожденных уже хорошо выражена. При этом миелинизация распространяется на зрительный нерв из центра на периферию, т. е. происходит в противоположном направлении роста его нервных волокон. Миелинизация нервных волокон головного мозга начинается с 36-й недели эмбрионального периода.
К моменту рождения миелинизация зрительных проводящих путей в области первичных проекционных корковых зрительных центров (поле 17 по Бродману) заканчивается. Поля 18 и 19 по Бродману - продолжают миелинизацию еще в течение 1-1,5 мес после рождения. Позднее всего миелинизируются поля в области высших ассоциативных центров (терминальные зоны Флексига). В этих зонах миелинизация внутримозговых проводников, которые соединяют зрительные центры различных уровней между собой и с корковыми центрами других анализаторов, завершаются только на 4-м месяце жизни ребенка. Аксоны некоторых больших пирамидных клеток в 5-м слое поля 17 по Бродману начинают покрываться миелиновой оболочкой с 3-месячного возраста. В аксонах клеток 3-го слоя в этом возрасте еще нет следов миелина.
Таким образом, миелинизация нервных волокон зрительного пути начинается на 36-й неделе эмбрионального периода и в общих чертах заканчивается в корковых структурах головного мозга к 4-летнему возрасту.
На миелинизацию нервных волокон зрительного пути оказывают значительное стимулирующее влияние лучи света. Этот феномен, открытый Флексигом более 100 лет назад, получил подтверждение в дальнейшем в целом ряде научных публикаций.

Общее направление развития нервной системы в онтогенезе реализуется в соответствии с ходом филогенеза, т. е раньше созревают с ходом филогенеза, т. е. раньше созревают филогенетически более древние структуры (рекапитуляция признаков). Так, ретикулоспинальные и вестибулярные системы созревают раньше, чем руброспинальные. Руброспинальная созревает раньше, чем пирамидная система. На фоне этого общего плана развития развитие других систем характеризуется гетерохронностью. Например, очень рано созревают нейроны ядер тройничного и лицевого нервов, медиального продольного пучка. Это соответствует принципам системогенеза П.К. Анохина: на каждом этапе онтогенеза консолидируются функциональные системы, обеспечивающие наиболее эффективную адаптацию организма к конкретным условиям. Например поддержание гомеостаза, приспособление к конкретным условиям среды.

Диаметр и длина осевых цилиндров нервных волокон увеличивается в пренатальном периоде и продолжает увеличиваться и после рождения. Так, в локтевых нервах диаметр осевых цилиндров составляет 1-3 мкм, к 4 годам — 7 мкм. Это увеличение продолжается до 5-9 лет и совпадает со сроками окончательной зрелости, когда достигается максимальная скорость проведения.

Миелинизация нервных волокон начинается в пренатальном периоде, сроки же окончания, в особенности для волокон коры больших полушарий, затягиваются на период раннего и позднего детства, подросткового возраста, вплоть до взрослого состояния (Рис. V. 2). Меньшей степени это у всех соматических нервных волокон и части волокон вегетативной нервной системы. В черепномозговых нервах миелинизация происходит раньше, чем в спинномозговых: вестибулярный нерв, например, начинает миелинизироваться на 3-м месяце внутриутробного развития, а волокна, образующие корешки спинного мозга, — на 4-м месяце. В вентральных корешках орган миелинизации короче, чем в дорсальных. В целом, в периферических нервах миелинизация заканчивается лишь к 9 годам жизни.

Гистофизиологическое созревание нервной и мышечной ткани происходит взаимообусловленно. Так, у эмбриона в закладки почек, конечностей и в миотомы врастают миобласты и нервные волокна. Если образующиеся из миобластов миотрубочки не получают иннервации, их развитие прекращается. Когда появляются движения эмбриона, в передних рогах серого вещества спинного мозга многие мотонейроны гибнут из-за того, что их аксоны не образовали синапсов с миотрубочками.

Анализаторы

Зрительная сенсорная система. Развитие глаза начинается на 3-6 неделе эмбриогенеза. Сетчатка развивается как вырост промежуточного мозга, который вначале имеет

мешкообразную форму, а на 11-й неделе приобретает вид бокала. Сосудистая оболочка и склера образуется из мезенхитмы, хрусталик — из эктодермы. К рождению сетчатка еще не полно дифференцирована. Колбочек в сетчатке сравнительно мало, и они имеют округлую форму. Не сформирована центральная ямка. Клеточная дифференцировка сетчатки заканчивается только к 4-5-ти месяцам постнатальной жизни.

Миелинизация зрительных волокон начинается на 8-9-м месяце пренатальной жизни. Она идет по восходящей, в направлении от хиазмы к таламусу, а затем — к сетчатке. Завершается к 4-м месяцам жизни ребенка. В течение первого года жизни интенсивно развиваются зрительные центры мозга и проекционные зрительные корковые центры. Окончательное созревание цитоархитектоники ассоциативно-зрительных полей — 18-19 — наступает лишь к 7-ми годам, однако и к этому возрасту зрительный аппарат оказывается еще не полностью дифференцирован.

Световая чувствительность сетчатки повышается в течение 20-ти лет. До 10-ти лет расширяются границы поля зрения. После рождения постепенно меняется форма глазного яблока. В результате, в периоде детства преобладает небольшая дальнозоркость, которая выправляется в норме к 8-12-ти годам. Однако у 40% детей глазное яблоко с возрастом удлиняется, вследствие этого развивается близорукость.

Причины близорукости могут быть различными. Одна из основных — наследственная предрасположенность. Неблагоприятно также длительное сосредоточенное рассматривание близких предметов. Оптимальным для фокусирующего аппарата является расстояние от глаз 40 см. После рождения постепенно совершенствуются координация и согласованность сокращений мышц глазного яблока, обеспечивающих сосредоточение на объекте и слежение за ним.

Полноценное цветоразличение, которое обеспечивается созреванием не только колбочковых системяетчатки, но и центральных (мозговых) зрительных структур, развивается также постепенно, к 3-м годам жизни.

Острота зрения у новорожденных очень низкая. Это связано, в частности, с отмеченной выше структурной незрелостью центральной ямки сетчатки. Острота зрения становится нормальной лишь к 5-ти годам.

Слуховая сенсорная система. Слуховой пузырек отшнуровывается от мозга на 4-й неделе эмбриона. Улитка формируется на 10-й неделе. До 5-ти месяцев эмбриогенеза ее размер увеличивается. К 6-ти месяцам дифференцируется рецепторная часть улитки. Миелинизация слуховых волокон в стволе мозга заканчивается в 4-9 месяцев плодного периода. Миелинизация же таламических и корковых отделов завершается лишь к 6-ти годам и позднее. Среднее ухо до рождения содержит жидкость.

Слуховые косточки среднего уха только через несколько месяцев после рождения освобождаются от остатков соединительной ткани и становятся достаточно подвижными. Благодаря этому, колебания барабанной перепонки, вызванные звуковыми волнами, дифференцированно передаются с помощью косточек на базальную мембрану, с расположенными на ней рецепторными клетками.

Представляет интерес также развитие наружного уха. Оно начинается со 2-го месяца эмбриогенеза, с закладки нескольких бугорков, образованных мезенхимой, окружающей первую жаберную борозду. В дальнейшем, благодаря многим точкам роста, формируется окончательная конфигурация наружного уха. Она бывает настолько индивидуальна, что используется в некоторых европейских странах для идентификации личности.

Человек начинает воспринимать звуки внешней для него среды уже в плодном периоде. Слуховая чувствительность совершенствуется до 15-20 лет. В развитии речеслуховой сферы, а также музыкального слуха значительную роль играют обучение и воспитание, т. е. условия соответствующей среды. Вместе с тем, уровень развития слуховой чувствительности в значительной степени генетически обусловлен.

Вестибулярная сенсорная система. Закладывается в эмбриогенезе одновременно со слуховой системой. Это — верхняя часть слухового пузырька, из которой формируются маточка и полукружные каналы. Вестибулярная система созревает сравнительно рано. Так, миелинизация вестибулярного нерва, а также созревание одного из ведущих вестибулярных ядер — ядра Дейтерса в продолговатом мозге наблюдаются очень рано: к 4-м месяца плодного периода. К этому времени у плода уже выражены вестибулярные тонические рефлексы. У новорожденных, благодаря им, хорошо развиты статокинетические рефлексы, а в более позднем возрасте — рефлексы удержания головы, сидения, стояния.

Вкусовая и обонятельная сенсорные системы. У 3-х месячного плода начинают развиваться вкусовые луковицы в сосочках языка. Вкусовые рецепторы у новорожденных занимают даже большую поверхность слизистой оболочки рта, чем у взрослых: они расположены не только на языке, но и на слизистой ротовой полости, на губах и даже щеках. В соответствии с этим, новорожденный различает все 4 эталонные вида вкуса: сладкий, кислый, соленый и горький. В конце 1-го года жизни у ребенка достаточно развита способность различать вкусовые качества пищи. С 2 до 6 лет снижаются пороги вкусовой чувствительности.

Обонятельный эпителий со специфическими рецепторными клетками и нервными волокнами обособляются уже на 2-м месяце пренатальной жизни. К б месяцам он несколько суживается. Окончательная дифференцировка обонятельного эпителия заканчивается к 7 месяцам пренатальной жизни. Миелинизация волокон обонятельных нервов и обонятельного тракта заканчивается пренатально. С возрастом пороги обонятельной чувствительности снижаются. К концу первого детства обонятельная система оказывается сформированной.

Таким образом, гисто-физиологическое созревание структур вкусовой и обонятельной систем происходит быстрее и оканчивается раньше, чем других сенсорных систем. Это связано с особым значением вкуса и обоняния в процессах адаптации организма новорожденного к новым условиям существования и вскармливания материнским молоком.

Экстероцептивная сенсорная система. Рецепторы тактильной, болевой и температурной чувствительности появляются в коже уже 8-недельного плода. Инкапсулированные тельца появляются начиная с 3-го месяца эмбриогенеза. Тельца Пачини окончательно созревают лишь к 6 годам жизни. Тельца Майснера — до 6 месяца после рождения. Снижение порогов тактильной чувствительности продолжается до 20 лет. Понижаются также пороги болевой чувствительности.

Кровеносная система

Первые очаги кроветворения выявляются в стенках желточного мешка у 5-недельного эмбриона. К началу 2-го месяца кроветворение происходит в теле эмбриона, к его концу сосредотачивается в печени. В начале 4-го месяца начинается костномозговое и селезеночное кроветворение. Начиная с 7 месяцев лимфоциты образуются также при участии вилочковой железы (тимус). У детей раннего возраста кроветворение протекает в красном костном мозге. С 4 до 15 лет во многих костях красный костный мозг перерождается в жировой. После 30 лет кроветворение происходит только в губчатом веществе грудины, тел позвонков и ребер.

Эритроциты плода сравнительно крупные, многие содержат ядро. По мере развития плода их количество постепенно увеличивается, размеры уменьшаются, и они теряют ядро. Реакция на сильные эмоциональные и болевые стрессы в виде выброса эритроцитов из депо в циркулирующую кровь появляется лишь с 12 лет.

В эритроцитах эмбриона содержится эмбриональный гемоглобин (HBF). На 4-м месяце эмбриогенеза появляется взрослый гемоглобин (НВА), который пока составляет 10% всего гемоглобина. Только в возрасте 40 дней после рождения большая часть гемоглобина представлена в форме НВА. Лейкоциты появляются в кровеносной системе плода в конце 3-го месяца эмбриогенеза. Соотношение количества нейтрофилов и лимфоцитов меняется и в процессе эмбриогенеза, и постнатально до 15 лет. Дифференцировка Т- и В- лимфоцитов происходит в самом конце пренатального периода или в самом начале постнатального.

Групповые свойства крови определяются генотипом. Агглютиногены A и B появляются в эритроцитах 3-месячного плода, однако наибольшая способность к агглютинации достигается лишь к 20 годам жизни. Агглютиногены системы резус определяются у 2-3-месячного плода.

Сердце у эмбриона закладывается в возрасте 3 недель в виде 2 трубок, образующихся из висцерального листка спланхнотома. Они сближаются и срастаются. Перегородка между ними редуцируется, и в результате формируется трубчатое сердце (как у ланцетника). Средняя часть трубки расширяется (будущий желудочек). Передний конец сужается в артериальный конус. К возрасту 4 недели сердце становится 2-камерным (как у рыб). На 5-й неделе образуется межпредсердная перегородка и сердце становится 3-камерным (как у амфибий). Затем, благодаря образованию изгибов и поворотов, желудочек оказывается вентральнее предсердия и каудальнее его. Разделение предсердий происходит на 6-й неделе. На 7-й неделе разделяются желудочки.

Проводящая система сердца закладывается очень рано: на 4-й неделе эмбриогенеза. В течение 2-го месяца эмбриогенеза сердце начинает перемещаться из области шеи в грудную полость. У 5-6-недельного эмбриона предполагается наличие холинорецепторов в миокарде.

Дифференцировка кардиомиоцитов, проводящей системы и сосудов интенсивно продолжается до 2 лет, а затем более медленно — до 7 лет. В этом возрасте сердце ребенка имеет все черты сердца взрослого. Далее происходит, в основном его рост.

У плода формируется особая система кровообращения. При рождении, когда перерезают пуповину, кровь из плаценты перестает поступать в организм плода. При первом вдохе включается малый круг кровообращения, и далее начинают работать оба круга.

Системы дыхания и пищеварения

На весь период плодного развития органом дыхания плода является плацента. Особенностью является то, что кровь, которая идет из плаценты, отличается более низким напряжением кислорода, чем артериальная кровь взрослого. Это объясняется и биохимическими особенностями крови, и анатомическим строением сосудистой системы плода. Содержание кислорода в тканях плода в целом соответствует состоянию тяжелой гипоксии. Тем не менее, для нормального развития тканей его бывает достаточно, в первую очередь, благодаря большому сродству гемоглобина к кислороду (большему, чем у взрослого).

После рождения происходят дальнейшая дифференцировка бронхиального древа, увеличение количества и формирование типичных ацинусов. Легкие разрастаются в течение длительного времени: от рождения и до взрослого состояния.

Пищеварительная система развивается из первичной кишки, которая закладывается у эмбриона на 3-4-й неделе.

Железы внутренней секреции

Развитие желез внутренней секреции осуществляется в определенной последовательности. Сначала формируется закладка железы, затем она начинает функционировать, о чем можно судить по началу синтеза гормона, далее формируется гормональное взаимодействие между различными железами и, наконец, устанавливающая нейроно-эндокринные взаимодействия.

Гипофиз образуется из двух зачатков: аденогипофиз — из выпячивания крыши ротовой полости, нейрогипофиз — из воронки промежуточного мозга. Это наблюдается у плода в возрасте 6,5 недель. Синтез вазопрессина и окситоцина клетками супраоптического и паравентрикулярного ядер гипоталамуса начинается в 3-4 месяца внутриутробного периода. В нейрогипофизе они обнаруживаются на 4-м месяце. Гормоны аденогипофиза начинают синтезироваться с 9-й недели плода. Соматотропный гормон (СТГ) — гормон роста — стимулирует рост эпифизарных хрящей. Плод растет со скоростью, в несколько раз большей, чем дети. Однако полагают, что рост плода регулируется плацентарными гормонами и находится под действием генетической программы.

Пролактин появляется в аденогипофизе на 9-й неделе развития. Особую роль он играет в постнатальной жизни, в период полового созревания. Титопропин (ТТГ) определяется на 13-й неделе. У плода он достигает более высокого уровня, чем у взрослого. У женских плодов его уровень больше, чем у мужских. Влияние гипоталамуса на тиреотропную функцию гипофиза обнаруживается у плода в последней трети развития.

Адренокортикотропный гормон (АКТГ) появляется у эмбрионов в возрасте 8 недель. К 7 месяцам его уровень достигает максимального значения, затем снижается. На 7-м месяце проявляется действие этого гормона на надпочечники. Во 2-й половине эмбриогенеза гипофиз становится зависимым от гипоталамуса.

Гонадотропные гормоны (FIT) появляются с 3-месячного возраста плода. Они стимулируют эндокринную секрецию половых желез, но не контролируют их половую дифференцировку. На 5-м месяце у плода под действием тестостерона происходит половая дифференцировка гипоталамо-гипофизарной системы. После этого образуется связь между гонадотропной функцией гипофиза, половыми железами и гипоталамусом. У плодов последней -трети плодного периода концентрация ГЕГ выше, чем у взрослого. У новорожденных она остается очень высокой, после первой недели жизни — снижается, а в препубертатном периоде — увеличивается.

Щитовидная железа образуется у 3-4-недельного плода из выпячивания вентрального отдела глотки. В 3 месяца начинает выявляться тироксин в крови. Гормоны щитовидной железы играют очень большую роль в развитии, процессах роста и дифференцировки тканей плода. Они определяют тонкую структурную и биохимическую дифференцировку нейронов, их отростков в ЦНС. Они определяют взаимодействие систем гипоталамо-гипофизарногонадной, а также надпочечниковой систем. С отклонениями в нормальной деятельности щитовидной железы связаны нарушения процессов окостенения скелета и развития элементов головного мозга. Половые различия в функциях щитовидной железы формируются еще до рождения, но особенно резко проявляются в период полового созревания.

В надпочечниках корковое вещество дифференцируется на 5-й неделе плода, и ко 2-му месяцу начинается синтез гормонов. Они участвуют в обмене гликогена в печени, стимулируют развитие вилочковой железы и легких. Эстрогены коры надпочечников у женских плодов стимулируют развитие матки и других половых органов. После рождения гормоны принимают участие в адаптационных процессах, связанных со стрессовыми реакциями. Нарушение функции коры надпочечников приводят к серьезным дисфункциям половой системы и углеводного обмена: у девочек развиваются мужские половые признаки, умственная отсталость и т. д.

Мозговое вещество надпочечников начинает развиваться позже коркового: в начале 4-го месяца внутриутробного периода. Адреналина у плода образуется сравнительно мало. Действие его проявляется сразу после рождения: новорожденные реагируют на стресс повышением секреции катехоламинов.

Половые железы начинают дифференцироваться на 5-й неделе плодного периода из нейтральной гонады. Превращение индифферентных гонад в яичники или семенники начинается после миграции в эти гонады первичных половых клеток на 6-й неделе. Если генотип плода — XV, то первичные половые клетки дифференцируются в сперматозоиды, окружающие их — в клетки Лейдига. Эти последние появляются у эмбрионов на 8-й неделе: они синтезируют мужские половые гормоны — андрогены, например, тестостерон. Андрогены оказывают влияние на реализацию генетической программы пола. У 5-7 месячных плодов андрогены вызывают дифференцировку гипоталамуса по мужскому типу, в их отсутствие процесс идет по женскому типу. Андрогены обеспечивают развитие мужских половых органов и опускание яичек в мошонку, которое происходит начиная с 3-месячного возраста плода до рождения. Опустившиеся яички являются одним из критериев доношенности плода. В период полового созревания андрогены обеспечивают окончательное развитие по мужскому типу.

Если генотип плода — XX, то первичные половые клетки развиваются в овогонии. Созревание их и образование фолликулов начинается с 4-го месяца внутриутробного развития. Гормоны яичников не влияют на формирование половых органов. Формирование самих яичников и других половых органов плода происходит под действием материнских гонадотропинов, эстрогенов плаценты и надпочечников. У женского плода сохраняется мюллеров канал. Он дифференцируется в яйцеводы, матку, верхнюю часть влагалища. Вольфов канал при нормальном развитии, при отсутствии тестостерона, дегенерирует.

Поджелудочная железа дифференцируется на 3-м месяце плодного периода. Синтез инсулина начинается еще раньше: в 2 месяца. Формирование островков Лангерганса завершается к 5-му месяцу. Инсулин у плодов регулирует углеводный обмен. У взрослых при гиперфункции бета-клеток островков Лангерганса развивается сахарный диабет. В последние годы увеличивается процент заболевания сахарным диабетом детей. Основные причины заболевания — избыточное потребление углеводов и наследственная предрасположенность.

В этот день:

  • Дни рождения
  • 1877 Родился Анри Эдуар Брёйль - французский католический священник, археолог, антрополог, этнолог и геолог, специалист по палеолиту и истории первобытного искусства. Изучал наскальную живопись в долинах Соммы и Дордони, изучал первобытные стоянки в Испании, Португалии, Италии, Ирландии, Эфиопии, Южной Африке, Британском Сомали и Китае. Доказал существование ориньякской эпохи верхнего палеолита Западной Европы, а также древнепалеолитических клектонских комплексов, характеризующихся отсутствием ручных рубил.

6. Что такое миелинизация?

Скачать:


Предварительный просмотр:

Краткая аннотация понятий, представленных в книге Т.М. Уманской «Невропатология» (глава 2):

1. Определение понятий «филогенез» и «онтогенез».

2. Основные периоды онтогенеза и охарактеризуйте их.

3. Основные этапы формирования нервной системы.

4. Что такое «эволюция нервной системы»?

5. Определение критическим периодам.

6. Что такое миелинизация?

7. В какой период жизни человека осуществляется миелинизация?

  1. Определение понятий «филогенез» и «онтогенез».

Филогенез - эволюция вида, т.е. развитие любой группы родственных друг другу организмов, возникающих из ранее существующего вида.

Онтогенез – это процесс индивидуального развития организма человека в течение всей его жизни.

  1. Основные периоды онтогенеза их характеристика.

Онтогенез состоит из двух периодов:

Пренатального (внутриутробного);

Постнатального (внеутробного).

Развитие человека – непрерывный процесс, протекающий в течение всей его жизни. С момента рождения и до смерти в организме протекает ряд последовательных закономерных морфологических, биохимических и физиологических изменений, в связи с чем различают определенные временные отрезки или периоды. Границы, отделяющие один возраст от другого в определенной степени условны, но в тоже время для каждого возраста характерны присущие только ему черты строения и функционирования. В качестве критериев, на основании которых выделяют эти периоды, были предложены: масса тела, окостенение скелета, прорезывание зубов, мышечная сила, степень полового созревания и др.

  1. Основные этапы формирования нервной системы.

Нервная система закладывается и развивается из элементов наружного зародышевого листка - эктодермы . Помимо нервной системы из эктодермы образуются покровные ткани организма .

2-я неделя эмбрионального развития на дорсальной стороне зародыша обособляется участок эпителия - нервная пластинка , клетки которой интенсивно размножаются и дифференцируются, превращаясь в узкие цилиндрические, резко отличающиеся от соседних клеток покровного эпителия.

В конце 3-й недели - в результате интенсивного деления и неравномерного роста края нервной пластинки постепенно приподнимаются, образуя валики, которые развития смыкаются в нервную трубку . Головной отдел нервной трубки преобразуется в мешковидное расширение , дающее начало трем первичным мозговым пузырям. Первый пузырь образует первичный передний мозг, средний пузырь - первичный средний мозг, а из третьего пузыря образуется первичный задний мозг.

К концу 4-й недели - концы нервной трубки зарастают. Головной конец нервной трубки начинает расширяться, и из него образуются мозговые пузыри . Из туловищного отдела мозговой трубки образуется спинной мозг , а из головного отдела - головной мозг .

Полушария головного мозга становятся самой большой частью нервной системы, происходит выделение основных долей, начинается образование извилин и борозд . Из оболочек в ткань мозга врастают кровеносные сосуды . В спинном мозге формируются шейное и поясничное утолщения , связанные с иннервацией верхних и нижних конечностей.

В последние месяцы эмбрионального развития в нервной системе заканчивается формирование внутренней структуры мозга .

В последние два месяца внутриутробного развития начинается процесс активной миелинизации головного мозга .

  1. Что такое «эволюция нервной системы»?

В развитии нервной системы многоклеточных принято выделять три типа нервной системы - диффузную (кишечнополостные), узловую (членистоногие) и трубчатую (позвоночные).

Эволюция нервной системы, ее структура и функции, как считает Е.К. Сепп, должны рассматриваться в неразрывной связи с эволюцией моторики - в каком бы участке тела ни возникло возбуждение, в этот процесс вовлекается вся нервная система, что дает тотальное сокращение всей мускулатуры.

Вторая степень моторики - выделение специализированных частей тела, обеспечивающих передвижение (жгутики, реснички). Характер движения сохраняется прежний - перистальтический, бесскелетный.

Третья ступень - коренное преобразование моторики связано с развитием скелета. В этом случае речь идет о движении с помощью рычагов. Рычаговая форма моторики потребовала чрезвычайного усложнения управляющего аппарата - нервной системы.

Эволюцию структуры и функции нервной системы следует рассматривать как с позиции совершенствования от дельных его элементов - нервных клеток, так и с позиции совершенствования общих свойств, обеспечивающих приспособительное поведение.

Первым этапом развития нервной системы было формирование диффузной нервной системы. Нервные клетки такой нервной системы мало напоминают нейроны позвоночных. Нейроны слабо дифференцированы по функции. Скорость распространения возбуждения по волокнам значительно ниже, чем у животных.

Нейроны узловой нервной системы отличаются от нейрнов диффузной. Происходит увеличение количества нервных клеток, возрастает их разнообразие, возникает большее количество вариаций, увеличивается скорость проведения импульса.

Трубчатая нервная система - высший этап структурной и функциональной эволюции нервной системы. Все позвоночные имеют центральную нервную систему, которая состоит из спинного и головного отделов. Структурно, строго говоря, трубчатый вид имеет только спинной мозг.

Процесс энцефализации , т.е. совершенствование структуры и функций головного мозга у млекопитающих, дополняется кортикализацией - формированием и совершенствованием коры больших полушарий. Построенная по экранному принципу кора больших полушарий содержит не только специфические проекционные (соматочувствительные, зрительные, слуховые и т.д.), но и значительные по площади ассоциативные зоны. Кора мозга обладает рядом свойств, характерных только для нее. Важнейшее из них - чрезвычайно высокая пластичность и надежность, как структурная, так и функциональная.

Изучение этих свойств центральной нервной системы в эволюции позвоночных позволило А.Б. Когану в 60-х гг. XX в. обосновать вероятностно статистический принцип организации высших функций мозга . Этот принцип в наиболее яркой форме выступает в коре мозга, являясь одним из приобретений прогрессивной эволюции.

  1. Определение критическим периодам.

Критическим периодом называется тот период, когда меняется среда обитания, образ питания или накопленное количество переходит в качество.

Критические периоды проявляются в организме человека на протяжении всей его жизни: во внутриутробном и в постнатальном периоде:

Роды , представляют собой сложный и порой небезопасный для организма матери и ребенка процесс.

- 7-й день внутриутробного развития , когда оплодотворенная клетка, попав в полость матки, начинает внедряться в её слизистую оболочку, меняет среду обитания, образ питания, переключение с внутриклеточного питания на питание через кровь материнского организма, и внутри ее клетки идет усиленное размножение клеток (бластомеров), которые меняют свою дифференцировку. В это время имеется несколько пунктов, способствующих наступлению критического периода.

- развитие нервной системы эмбриона и плода - в начале на ступает период образования нервной трубки, затем развитие нервной системы наступает в период развития и деления мозговых пузырей. Сбой в делении мозговых пузырей может привести к отсутствию какого-то из отделов головного мозга, что повлечет за собой развитие уродства.

- закладка извилин и борозд , первые извилины появляются на 100-й день внутри утробного развития. И любое негативное воздействие на организм беременной женщины может привести к сбою в развитии эмбриона. Это может вызвать неправильную закладку коры больших полушарий, а без коры больших полушарий человек жить не может.

- дифференцировка клеток в коре больших полушарий головного мозга (расщепление клеток коры на шесть слоев), это происходит на 5–6-м месяцах внутриутробного развития.

  1. Что такое миелинизация?

Процесс активной миелинизации головного мозга, т.е. отложение миелиновой оболочки в отростках нервных клеток, или нейронов. Миелиновая оболочка отростков нервных клеток является дополнительной, и не все волокна нервной системы покрываются данной оболочкой. Дополнительной миелиновой оболочкой покрываются около половины отростков нервной системы.

7. В какой период жизни человека осуществляется миелинизация?

В последние два месяца внутриутробного развития начинается процесс активной миелинизации головного мозга, завершение этого процесса происходит после рождения.

Наиболее интенсивное покрытие отростков нейронов происходит в певые 2–3 года жизни ребенка. Завершается миелинизация к 10–12 годам жизни ребенка.