Под давлением. Решение типовых задач. Определить абсолютное давление ро на свободной поверхности воды в нижнем сосуде, если в верхнем сосуде жидкость керосин Т–1

Давление воздуха - сила, с которой воздух давит на земную поверхность. Измеряется в миллиметрах ртутного столба, миллибарах. В среднем она составляет 1,033 г. на 1 см. кв.

Причина, вызывающая образования ветра - разница атмосферного давления. Ветер дует из области более высокого атмосферного давления, в область с более низким. Чем больше разница в атмосферном давлении, тем сильнее ветер. Распределение атмосферного давления на Земле определяет направление ветров, господствующих в тропосфере на разных широтах.

Образуются при конденсации водяного пара в поднимающемся воздухе вследствие его охлаждения.
. Вода в жидком или твердом состоянии, выпадающая на земную поверхность, называется атмосферными осадками.

По происхождению выделяют два вида осадков:

выпадающие из облаков (дождь, снег, крупа, град);
образующиеся у поверхности Земли ( , роса, изморозь).
Измеряются осадки слоем воды (в мм.), который образуется, если выпавшая вода не стекает и не испаряется. В среднем за год на Землю выпадает 1130 мм. осадков.

Распределение осадков . Атмосферные осадки распределены по земной поверхности очень неравномерно. Одни территории страдают от избытка влаги, другие от её недостатка. Особенно мало получают осадков территории, расположенные вдоль северного и южного тропиков, где воздуха высоки и потребность в осадках особенно велика.

Главная причина такой неравномерности - размещение поясов атмосферного давления. Так, в области экватора в поясе низкого давления постоянно нагретый воздух содержит много влаги, он поднимается вверх, охлаждается и становится насыщенным. Поэтому в области экватора образуется много облаков, и идут обильные дожди. Немало осадков и в других областях земной поверхности, где низкое давление.

В поясах высокого давления преобладают нисходящие воздушные потоки. Холодный воздух, опускаясь, содержит мало влаги. При опускании он сжимается и нагревается, благодаря чему удаляется от точки насыщения, становится суше. Поэтому в областях повышенного давления над тропиками и у полюсов выпадает мало осадков.

По количеству выпадающих осадков ещё нельзя судить об обеспеченности территории влагой. Необходимо учитывать возможное испарение - испаряемость. Она зависит от количества солнечного тепла: чем больше его, тем больше влаги может испариться, если она есть. Испаряемость может быть большой, а испарение маленьким. Например, в испаряемость (сколько влаги может испариться при данной температуре) 4500 мм/год, а испарение (сколько действительно испаряется) всего 100 мм/год. По соотношению испаряемости и испарения судят об увлажненности территории. Для определения увлажнения пользуются коэффициентом увлажнения. Коэффициент увлажнения – отношение годового количества осадков к испаряемости за один и тот же промежуток времени. Он выражается дробью в процентах. Если коэффициент равен 1 - увлажнение достаточное, если меньше 1, увлажнение недостаточное, а если больше 1, то увлажнение избыточное. По степени увлажнения выделяются влажные (гумидные) и сухие (аридные) области.

ЗАДАНИЯ

К выполнению расчетно – графической работы

По дисциплине «Гидравлика»

Тема: гидростатика

Северодвинск


ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

Гидравлика, или техническая механика жидкостей- это наука о законах равновесия и движения жидкостей, о способах применения этих законов к решению практических задач;

Жидкостью называют вещество, находящееся в таком агрегатном состоянии, которое сочетает в себе черты твердого состояния (весьма малая сжимаемость) и газообразного (текучесть). Законы равновесия и движения капельных жид­костей в известных пределах можно применять и к газам.

На жидкость могут действовать силы, распределенные по ее массе (объему), называемые массовыми , и по поверхности, называемые поверхностными . К первым относятся силы тя­жести и инерции, ко вторым - силы давления и трения.

Давлением называется отношение силы, нормальной к по­верхности, к площади. При равномерном распределении

Касательным напряжением называется отношение силы трения, касательной к поверхности, к площади:

Если давление р отсчитывают от абсолютного нуля, то его называют абсолютным (р абс), а если от условного нуля (т. е. сравнивают с атмосферным давлением р а, то избыточным (р изб):

Если Р абс < Р а, то имеется вакуум, величина которого:

Р вак = Р а - Р абс

Основной физической характеристикой жидкости является плотность ρ (кг/м 3), определяемая для однородной жидкости отношением ее массы m к объему V:

Плотность пресной воды при температуре Т = 4°С ρ = = 1000 кг/м 3 . В гидравлике часто пользуются также понятием удельного веса γ (Н/м 3), т.е весом G единицы объема жидкости:

Плотность и удельный вес связаны между собой соотношением:

где g - ускорение свободного падения.

Для пресной воды γ вод = 9810 Н/м 3

Важнейшие физические параметры жидкостей, которые используются в гидравлических расчетах,- сжимаемость, температурное расширение, вязкость и испаряемость.



Сжимаемость жидкостей характеризуется модулем объемной упругости К, входящим в обобщенный закон Гука:

где ΔV - приращение (в данном случае уменьшение) объема жидкости V, обусловленное увеличением давления на Δр. Например, для воды К вод ≈2 . 10 3 МПа.

Температурное расширение определяется соответствующим коэффициентом, равным относительному изменению объема, при изменении температуры на 1 °С:

Вязкость - это способность жидкости сопротивляться сдвигу. Различают динамическую (μ) и кинематическую (ν) вязкости. Первая входит в закон жидкостного трения Ньютона, выражающий касательное напряжение τ через поперечный градиент скорости dv/dt:

Кинематическая вязкость связана с динамической соотношением

Единицей кинематической вязкости является м 2 /с.

Испаряемость жидкостей характеризуется давлением насыщенных паров в функции температуры.

Давлением насыщенных паров можно считать то абсолютное давление, при котором жидкость закипает при данной температуре. Следовательно, минимальное абсолютное давление, при котором вещество находится в жидком состоянии, равно давлению насыщенных паров р н.п .

Основные параметры некоторых жидкостей, их единицы в СИ и внесистемные единицы, временно допускаемые к применению, приведены в Приложениях 1...3.


ГИДРОСТАТИКА

Давление в неподвижной жидкости называется гидростатическим и обладает следующими двумя свойствами:

На внешней поверхности жидкости оно всегда направлено во нормали внутрь объема жидкости;

В любой точке внутри жидкости оно по всем направлениям одинаково, т. е. не зависит от угла наклона площадки, по которой действует.

Уравнение, выражающее гидростатическое давление р в любой точке неподвижной жидкости в том случае, когда из числа массовых сил на нее действует лишь одна сила тяжести, называется основным уравнением гидростатики:

где p 0 - давление на какой-либо поверхности уровня жидкости, например на свободной поверхности; h - глубина расположения рассматриваемой точки, отсчитанная от поверхности с давлением р 0 .

В тех случаях, когда рассматриваемая точка расположена выше поверхности с давлением р 0 , второй член в формуле (1.1) отрицателен.

Другая форма записи того же уравнения (1.1) имеет вид

(1.2)

где z и z 0 - вертикальные координаты произвольной точки и свободной поверхности, отсчитываемые от горизонтальной плоскости вверх; p/(pg) - пьезометрическая высота.

Гидростатическое давление может быть условно выражено высотой столба жидкости p/ρg.

В гидротехнической практике внешнее давление часто равноатмосферному: P 0 =Р ат

Величина давления P ат = 1 кГ/см 2 = 9,81 . 10 4 н/м г называетсятехнической атмосферой .

Давление, равное одной технической атмосфере, эквивалентно давлению столба воды высотой 10 метров, т. е.

Гидростатическое давление, определяемое по уравнению (1.1), именуется полным или абсолютным давлением . В дальнейшем будем обозначать это давление р абс или p’. Обычно в гидротехнических расчетах интересуются не полным давлением, а разницей между полным давлением в атмосферным, т. е. так называемым манометрическим давлением

В дальнейшем изложении сохраним обозначение р за манометрическим давлением.

Рисунок 1.1

Сумма членов дает величину полного гидростатического напора

Сумма -- выражает гидростатический напор Н без учета атмосферного давления p ат /ρg, т. е.

На рис. 1.1 плоскость полного гидростатического напора и плоскость гидростатического напора показаны для случая, когда свободная поверхность находится под атмосферным давлением р 0 =p ат.

Графическое изображение величины и направления гидростатического давления, действующего на любую точку поверхности, носит название эпюры гидростатического давления. Для построения эпюры нужно отложить величину гидростатического давления для рассматриваемой точки нормально к поверхности, яа которую оно действует. Так, например, эпюра манометрического давления на плоский наклонный щит АВ (рис. 1.2,а) будет представлять треугольник ABC, а эпюра полного гидростатического давления - трапецию A"B"C"D" (рис. 1.2,б).

Рисунок 1.2

Каждый отрезок эпюры на рис. 1.2,а (например О К) будет изображать манометрическое давление в точке К, т. е. p K = ρgh K , а на рис. 1.2,б - полное гидростатическое давление

Сила давления жидкости на плоскую стенку равна произведению гидростатического давления ρ с в центре тяжести площади стенки на площадь стенки S, т. е.

Центр давления (точка приложения силы F) расположен ниже центра тяжести площади или совпадает с последним в случае горизонтальной стенки.

Расстояние между центром тяжести площади и центром давления в направлении нормали к линии пересечения плоскости стенки со свободной поверхностью жидкости равно

где J 0 - момент инерции площади стенки относительно оси, проходящей через центр тяжести площади и параллельной линии пересечения плоскости стенки со свободной поверхностью: у с - координата центра тяжести площади.

Сила давления жидкости на криволинейную стенку, симметричную относительно вертикальной плоскости, складывается из горизонтальной F Г и вертикальной F B составляющих:

Горизонтальная составляющая F Г равна силе давления жидкости на вертикальную проекцию данной стенки:

Вертикальная составляющая F B равна весу жидкости в объеме V, заключенном между данной стенкой, свободной поверхностью жидкости и вертикальной проекцирующей поверхностью, проведенной по контуру стенки.

Если избыточное давление р 0 на свободной поверхности жидкости отлично от нуля, то при расчете следует эту поверхность мысленно поднять (или опустить) на высоту (пьезометрическую высоту) p 0 /(ρg)

Плавание тел и их остойчивость. Условие плавания тела выражается равенством

G=P (1.6)

где G - вес тела;

Р - результирующая сила давления жидкости на погруженное в нее тело - архимедова сила .

Сила Р может быть найдена по формуле

P=ρgW (1.7)

где ρg - удельный вес жидкости;

W - объем жидкости, вытесненной телом, или водоизмещение.

Сила Р направлена вверх и проходит через центр тяжести водоизмещения.

Осадкой тела у называется глубина погружения наинизшей точки смоченной поверхности (рис. 1.3,а). Под осью плавания понимают линию, проходящую через центр тяжести С и центр водоизмещения D, соответствующий/ нормальному положению тела в состоянии равновесия (рис. 1.3, а)-

Ватерлинией называется линия пересечения поверхности плавающего тела со свободной поверхностью жидкости (рис. 1.3,б). Плоскостью плавания ABEF называется плоскость, полученная от пересечения тела свободной поверхностью жидкости, или, иначе плоскость, ограниченная ватерлинией.

Рисунок 1.3

Кроме выполнения условий плавания (1.5) тело (судно, баржа и т.д.) должно удовлетворять условиям остойчивости. Плавающее тело будет остойчивым в том случае, если при крене сила веса G и архимедова сила Р создают момент, стремящийся уничтожить крен и вернуть тело в исходное положение.

Рисунок 1.4

При надводном плавании тела (рис. 1.4) центр водоизмещения при малых углах крена (α<15°) перемещается по некоторой дуге, проведенной из точки пересечения линии действия силы Р с осью плавания. Эта точка называется метацентром (на рис. 1.4 точка М). Будем в дальнейшем рассматривать условия остойчивости лишь при надводном плавании тела при малых углах крена.

Если центр тяжести тела С лежит ниже центра водоизмещения, то плавание будет безусловно остойчивым (рис. 1.4,а).

Если центр тяжести тела С лежит выше центра водоизмещения D, то плавание будет остойчивым только при выполнении следующего условия (рис. 1-9,б):

где ρ - метацентрический радиус, т. е. расстояние между центром водоизмещения и метацентром

δ - расстояние между центром тяжести тела С и центром во­доизмещения D. Метацентрический радиус ρ находится по формуле:

где J 0 - момент инерции плоскости плавания или площади, ограниченной ватерлинией, относительно продольной оси (рис. 1-8,6);

W - водоизмещение.

Если центр тяжести тела С расположен выше центра водоизмещения и метацентра, то тело неостойчиво; возникающая пара сил G и Р стремится увеличить крен (рис. 1.4,в ).


УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ

При решении задач по гидростатике прежде всего нужно хорошо усвоить и не смешивать такие понятия, как давление р и сила F.

При решении задач на определение давления в той или иной точке неподвижной жидкости следует пользоваться основным уравнением гидростатики (1.1). Применяя это уравнение, нужно иметь в виду, что второй член в правой части этого уравнения может быть как положительным, так и отрицательным. Очевидно, что при увеличении глубины давление возрастает, а при подъеме - уменьшается.

Необходимо твердо различать давления абсолютное, избыточное и вакуум и обязательно знать связь между давлением, удельным весом и высотой, соответствующей этому давлению (пьезометрической высотой).

При решении задач, в которых даны поршни или системы поршней, следует писать уравнение равновесия, т. е. равенство нулю суммы всех сил, действующих на поршень (систему поршней).

Решение задач следует проводить в международной системе единиц измерения СИ.

Решение задачи должно сопровождаться необходимыми пояснениями, рисунками (принеобходимости), перечислением исходных величин (графа «дано»), переводом единиц в систему СИ.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ПО ГИДРОСТАТИКЕ

Задача 1. Определить полное гидростатическое давление на дно сосуда, наполненного водой. Сосуд сверху открыт, давление на свободной поверхности атмосферное. Глубина воды в сосуде h = 0,60 м.

Решение:

В данном случае имеем р 0 =р ат и потому применим формулу (1.1) в виде

р"=9,81.10 4 +9810 . 0,6 = 103986 Па

Ответ р’=103986 Па

Задача 2. Определить высоту столба воды в пьезометре над уровнем жидкости в закрытом сосуде. Вода в сосуде находитcя под абсолютным давлением p" 1 = 1,06ат (рисунок к задаче 2).

Решение .

Составим условия равновесия для общей точки А (см. рисунок). Давление в точке А слева:

Давление справа:

Приравнивая правые части уравнений, и сокращая на γg получаем:

Указанное уравнение можно также получить, составив условие равновесия для точек, расположенных в любой горизонтальной плоскости, например в плоскости ОО (см. рисунок). Примем за начало шкалы отсчета пьезометра плоскость ОО и из полученного уравнения найдем высоту столба воды в пьезометре h.

Высота h равна:

= 0,6 метра

Пьезометр измеряет величину манометрического давления, выраженного высотой столба жидкости.

Ответ: h = 0,6 метра

Задача 3. Определить высоту, на которую поднимается вода в вакуумметре, если абсолютное давление воздуха внутри баллона р’ в =0,95 ат (рис. 1-11). Сформулировать, какое давление измеряет вакуумметр.

Решение :

Составим условие равновесия относительно горизонтальной плоскости О-О:

гидростатическое давление, действующее изнутри:

Гидростатическое давление в плоскости О -О, действующее с внешней стороны,

Так как система находится в равновесии, то


Задача 4. Определить манометрическое давление в точке А трубопровода, если высота столба ртути по пьезометру h 2 =25 см. Центр трубопровода расположен на h 1 =40 см ниже линии раздела между водой и ртутью (рисунок к задаче).

Решение: Находим давление в точке В: р" В =р" А h 1 , так как точка В расположена выше точки А на величину h 1 . В точке С давление будет такое же, как в точке В, так как давление столба воды h взаимно уравновешивается, т. е.



отсюда манометрическое давление:



Подставляя числовые значения, получаем:

р" А -р атм =37278 Па

Ответ: р" А -р атм =37278 Па


ЗАДАЧИ

Задача 1.1. Канистра, заполненная бензином и не содержащая воздуха, нагрелась на солнце до температуры 50 °С. На сколько повысилось бы давление бензина внутри канистры, если бы она была абсолютно жесткой? Начальная температура бензина 20 0 С. Модуль объемной упругости бензина принять равным K=1300 МПа, коэффициент температурного расширения β = 8 . 10 -4 1/град.

Задача 1.2. Определить избыточное давление на дне океана, глубина которого h=10 км, приняв плотность морской воды ρ=1030 кг/м 3 и считая ее несжимаемой. Определить плотность воды на той же глубине с учетом сжимаемости и приняв модуль объемной упругости K = 2 . 10 3 МПа.

Задача 1.3. Найти закон изменения давления р атмосферного воздуха по высоте z, считая зависимость его плотности от давления изотермической. В действительности до высоты z=11 км температура воздуха падает по линейному закону, т. е. T=T 0 -β z , где β = 6,5 град/км. Определить зависимость p = f(z) с учетом действительного изменения температуры воздуха с высотой.

Задача 1.4. Определить избыточное давление воды в трубе В, если показание манометра р м = 0,025 МПа. Соединительная трубка заполнена водой и воздухом, как показано на схеме, причем Н 1 = 0,5 м; Н 2 =3 м.

Как изменится показание манометра, если при том же давлении в трубе всю соединительную трубку заполнить водой (воздух выпустить через кран К)? Высота Н 3 = 5 м.


Задача 1.5. В U-образную трубку налиты вода и бензин. Определить плотность бензина, если h б = 500 мм; h в = = 350 мм. Капиллярный эффект не учитывать.

Задача 1.6. В цилиндрический бак диаметром D = 2 м до уровня Н=1,5 м налиты вода и бензин. Уровень воды в пьезометре ниже уровня бензина на h = 300 мм. Определить веснаходящегося в баке бензина, если ρ б = 700 кг/м 3 .


Задача 1.7. Определить абсолютное давление воздуха всосуде, если показание ртутного прибора h = 368 мм, высота H=1 м. Плотность ртути ρ= 13600 кг/м 3 . Атмосферное давление 736 мм рт. ст.

Задача 1.8. Определить избыточное давление p 0 воздуха в напорном баке по показанию манометра, составленного из двух U-образных трубок с ртутью. Соединительные трубки заполнены водой. Отметки уровней даны в метрах. Какой высоты Н должен быть пьезометр для измерения того же давления p 0 Плотность ртути ρ = 13600 кг/м 3 .


Задача 1.9. Определить силу давления жидкости (воды) на крышку люка диаметром D=l м в следующих двух случаях:

1) показание манометра р м = 0,08 МПа; H 0 =1,5 м;

2) показание ртутного вакуумметра h = 73,5 мм при а= 1м ; ρ рт = 13600 кг/м 3 ; Н 0 =1,5 м.


Задача 1.10. Определить объемный модуль упругости жидкости, если под действием груза А массой 250 кг поршень прошел расстояние Δh = 5 мм. Начальная высота положения поршня (без груза) H =1,5 м, диаметры поршня d = 80 мм н резервуара D = 300 мм, высота резервуара h = 1,3 м. Весом поршня пренебречь. Резервуар считать абсолютно жестким.

Задача 1.11. Для опрессовки водой подземного трубопровода (проверки герметичности) применяется ручной поршневой насос. Определить объем воды (модуль упругости К = 2000 МПа), который нужно накачать в трубопровод для повышения избыточного давления в нем от 0 до 1,0 МПа. Считать трубопровод абсолютно жестким. Размеры трубопровода: длина L = 500 м, диаметр d=100 мм. Чему равно усилие на рукоятке насоса в последний момент опрессовки, если диаметр поршня насоса d n = 40 мм, а соотношение плеч рычажного механизма а/в = 5?


Задача 1.12 . Определить абсолютное давление воздуха в баке р 1 , еcли при атмосферном давлении, соответствующем h а = 760 мм рт. ст., показание ртутного вакуумметра h рт = = 0,2 м, высота h =1,5 м. Каково при этом показание пружинного вакуумметра? Плотность ртути ρ=13600 кг/м 3 .

Задача 1.13 . При перекрытом кране трубопровода К определить абсолютное давление в резервуаре, зарытом на глубине Н=5 м, если показание вакуумметра, установленного на высоте h=1,7 м, равно р вак = 0,02 МПа. Атмосферное давление соответствует р а = 740 мм рт. ст. Плотность бензина ρ б = 700 кг/м 3 .


Задача 1.14. Определить давление р’ 1 , если показание пьезометра h =0,4 м. Чему равно манометрическое давление?

Задача 1.15. Определить вакуум р вак и абсолютное давление внутри баллона р" в (рис. 1-11), если показание вакуумметра h =0,7 м вод. ст.

1) в баллоне и в левой трубке - вода, а в правой трубке - ртуть (ρ=13600 кг/м 3 );

2) в баллоне и левой трубке - воздух , а в правой трубке - вода.

Определить, какой процент составляет давление столба воздуха в трубке от вычисленного во втором случае манометрического давления?

При решении задачи принять h 1 = 70 см,h 2 = = 50 см.

Задача 1.17. Чему будет равна высота ртутного столба h 2 (рис. к задаче 1.16), если манометрическое давление нефти в баллоне А p а = 0,5 ат, а высота столба нефти (ρ=800 кг/м 3) h 1 =55 см?

Задача 1.18. Определить высоту столба ртути h 2 , (рисунок), если расположение центра трубопровода А повысится по сравнению с указанным на рисунке и станет на h 1 = 40 см выше линии раздела между водой и ртутью. Манометрическое давление в трубе принять 37 278 Па.

Задача 1.19. Определить, на какой высоте z установится уровень ртути в пьезометре, если при манометрическом давлении в трубе Р А =39240 Па и показании h=24 см система находится в равновесии (см. рисунок).

Задача 1.20. Определить удельный вес бруса, имеющего сле­дующие размеры: ширину b=30 см , высоту h=20 см и длину l = 100 см , если его осадка y=16 см

Задача 1.21. Кусок гранита весит в воздухе 14,72 Н и 10,01 Н в жидкости, имеющей относительный удельный вес 0,8. Определить объем куска гранита, его плотность и удельный вес.

Задача 1.22 Деревянный брус размером 5,0 х 0,30 м и высотой 0,30м спущен в воду. На какую глубину он погрузится, если от­носительный вес бруса 0,7? Определить, сколько человек могут встать на брус, чтобы верхняя поверхность бруса оказалась бы заподлицо со свободной поверхностью воды, считая, что каждый человек в среднем имеет массу 67,5 кг.

Задача 1.23 Прямоугольная металлическая баржа длиной 60 м, шириной 8 м, высотой 3,5 м, загруженная песком, весит 14126 кН. Определить осадку баржи. Какой объем песка V п нужно выгрузить, чтобы глубина погружения баржи была 1,2 м, если относительный удельный вес влажного песка равен 2,0?

Задача 1.24. Объемное водоизмещение подводной лодки 600 м 3 . С целью погружения лодки отсеки были заполнены морской водой в количестве 80 м 3 . Относительный удельный вес морской воды 1,025. Определить: какая часть объема лодки (в процентах) будет погружена в воду, если из подводной лодки удалить всю воду и она всплывет; чему равен вес подводной лодки без воды?

Ткань можно проткнуть иголкой, но не карандашом (если приложить такое же усилие). Карандаш и игла имеют разную форму и поэтому оказывают на ткань неодинаковое давление. Давление вездесуще. Оно приводит в действие механизмы (см. статью « «). Оно влияет на . оказывают давление на поверхности, с которыми соприкасаются. Атмосферное давление влияет на погоду прибор для измерения атмосферного давления – .

Что такое давление

Когда на тело перпендикулярно к его поверхности действует , то тело оказывается под давлением. Давление зависит от того, насколько велика сила, и от площади поверхности, на которую сила действует. Например, если выйти на снег в обычной обуви, можно провалиться; по этого не произойдет, если мы наденем лыжи. Вес тела один и тот же, но во втором случае давление распределится по большей поверхности. Чем больше поверхность, тем меньше давление. У северного оленя широкие копыта - ведь он ходит на снегу, и давление копыта на снег должно быть как можно меньше. Если нож острый, сила прикладывается к поверхности небольшой площади. Тупой нож распределяет силу по большей поверхности, поэтому и режет хуже. Единица давления - паскаль (Па) - названа в честь французского ученого Блеза Паскаля (1623 - 1662), сделавшего немало открытий в области атмосферного давления.

Давление жидкостей и газов

Жидкости и газы принимают форму сосуда, в котором они содержатся. В отличие от твердых тел, жидкости и газы давят на все стенки со­суда. Давление жидкостей и газов направлено во все сто­роны. давит не только на дно, но и на стенки аквариума. Сам аквариум давит только вниз. давит изнутри на футбольный мяч во всех направлениях, и поэтому мяч круглый.

Гидравлические механизмы

Действие гидравлических механизмов основано на давлении жидкости. Жид­кость не сжимается, поэтому если к ней приложить силу, она будет вынуждена сдвинуться с места. И тормоза работают на гидравлическом принципе. Уменьшение оборотов колее достигается с помощью давления тормозной жидкости. Водитель нажимает на педаль, поршень прокачивает тормозную жидкость через цилиндр, дальше она по трубке поступает в два других цилиндра и давит на поршни. Поршни прижимают тормозные колодки к диску колеса. Возникающее замедляет вращение колеса.

Пневматические механизмы

Пневматические механизмы действуют благодаря давлению газов - как правило, воздуха. В отличие от жид­костей, воздух может сжиматься, и тогда давление его возрастает. Действие отбойного молотка основано на том, что поршень сжимает воздух внутри его до очень большого давления. В отбойном молотке сжатый воздух давит на резец с такой силой, что можно бурить даже камень.

Пеногонный огнетушитель - это пневматическое устройство, работающее на сжатом углекислом газе. Сжав рукоятку, вы высвобождаете находящийся в канистре сжатый углекислый газ. Газ с огромной силой давит вниз, на специальный раствор, вытесняет его в трубку и шланг. Из шланга вырывается струя воды и пены.

Атмосферное давление

Атмосферное давление создастся весом воздуха над поверхностью . На каждый квадратный метр воздух давит с силой большей, чем вес слона. Вблизи поверхности Земли давление выше, чем высоко в небе. На высоте 10 000 метров там, где летают реактивные самолеты, давление невелико, так как сверху давит незначительная воздушная масса. В салоне самолёта поддерживается нормальное атмосферное давление, чтобы люди могли свободно дышать на большой высоте. Но даже в герметичном салоне самолёта у людей закладывает уши, когда давление становится ниже, чем давление внутри ушной раковины.

Атмосферное давление измеряется в миллиметрах ртутного столба. Когда меняется давление, меняется и . Низкое давление означает, что предсто­ит ухудшение погоды. Высокое давле­ние приносит ясную погоду. Нормальное давление на уровне моря – 760 мм (101 300 Па). В дни ураганов оно может упасть до 683 мм (910 Па).

КРАТКАЯ ТЕОРИЯ. Важнейший признак жидкости - существование свободной поверхности . Молекулы поверхностного слоя жидкости, имеющего толщину порядка 10 -9 м, находятся в ином состоянии, чем молекулы в толще жидкости. Поверхностный слой оказывает на жидкость давление, называемое молекулярным , что приводит к появлению сил, которые называются силами поверхностного натяжения .

Силы поверхностного натяжения в любой точке поверхности направлены по касательной к ней и по нормали к любому элементу линии, мысленно проведенной на поверхности жидкости. Коэффициент поверхностного натяжения -физическая величина, показывающая силу поверхностного натяжения, действующей на единицу длины линии, разделяющей поверхность жидкости на части:

С другой стороны, поверхностное натяжение можно определить как величину, численно равную свободной энергии единицы поверхностного слоя жидкости. Под свободной энергией понимают ту часть энергии системы, за счет которой может быть совершена работа при изотермическом процессе.

Коэффициент поверхностного натяжения зависит от природы жидкости. Для каждой жидкости он является функцией температуры и зависит от того, какая среда находится над свободной поверхностью жидкости.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА. Экспериментальная установка изображена на рис. 1. Она состоит из аспиратора А, соединенного с микроманометром М и сосудом В, в котором находится исследуемая жидкость. В аспиратор наливается вода. С помощью крана К аспиратор А может отсоединяться от сосуда В и присоединяться к такому же сосуду С с другой исследуемой жидкостью. Сосуды В и С плотно закрываются резиновыми пробками, имеющими по отверстию. В каждое отверстие вставляется стеклянная трубочка, конец которой представляет собой капилляр. Капилляр погружается на очень малую глубину в жидкость (так, чтобы он только касался поверхности жидкости). Микроманометр измеряет разность давления воздуха в атмосфере и аспираторе, или, что то же самое, в капилляре и сосуде В или С.



Микроманометр состоит из двух сообщающихся сосудов, один из которых представляет собой чашку большого диаметра, а другой наклонную стеклянную трубку малого диаметра (2 - 3 мм) (рис. 2). При достаточно большом отношении площадей сечений чашки и трубки можно пренебречь изменением уровня в чашке. Тогда по уровню жидкости в трубке малого диаметра можно определить измеряемую величину разности давлений:

где - плотность манометрической жидкости; - расстояние принимаемого неизменным уровня жидкости в чашке до уровня в трубке по наклону трубки; - угол, образованный наклонной трубкой с плоскостью горизонта.

В начальный момент времени, когда давление воздуха над поверхностью жидкости в капилляре и сосуде В одинаково и равно атмосферному. Уровень смачивающей жидкости в капилляре выше, чем в сосуде В, а уровень несмачивающей – ниже, так как смачивающая жидкость в капилляре образует вогнутый мениск, а несмачивающая - выпуклый.

Молекулярное давление под выпуклой поверхностью жидкости больше, а под вогнутым - меньше относительно давления под плоской поверхностью. Молекулярное давление, обусловленное кривизной поверхности, принято называть избыточным капиллярным давлением (давление Лапласа) . Избыточное давление под выпуклой поверхностью считается положительным, под вогнутой - отрицательным. Оно всегда направлено к центру кривизны сечения поверхности, т.е. в сторону ее вогнутости. В случае сферической поверхности избыточное давление можно вычислить по формуле:

где - коэффициент поверхностного натяжения, - радиус сферической поверхности.

Смачивающая капилляр жидкость поднимается до тех пор, пока гидростатическое давление столбика жидкости высотой (рис. 3а) не уравновесит избыточного давления, направленного в этом случае вверх. Высота 0 определяется из условия равновесия:

где - ускорение свободного падения, т.е.

Если, повернув кран аспиратора А, медленно выпускать из него воду, то давление воздуха в аспираторе, в соединенных с ним сосуде В и наклонном колене микроманометра начнет уменьшаться. В капилляре же над поверхностью жидкости давление равно атмосферному. В результате увеличивающейся разности давлений мениск жидкости в капилляре будет опускаться, сохраняя кривизну, пока не опустится до нижнего конца капилляра (рис. 3б). В этот момент давление воздуха в капилляре будет равно:

где - давление воздуха в сосуде В, - глубина погружения капилляра в жидкость, - давление Лапласа. Разность давлений воздуха в капилляре и сосуде В равна:

+ р = р изб + ρ g h = 2σ / r + ρ g h

С этого момента начинает меняться кривизна мениска. Давление воздуха в аспираторе и сосуде В продолжает уменьшаться. Так как разность давлений увеличивается, радиус кривизны мениска убывает, а кривизна возрастает. Наступает момент, когда радиус кривизны становится равным внутреннему радиусу капилляра (рис. 3в), а разность давлений становится максимальной. Затем радиус кривизны мениска снова увеличивается, и равновесие будет неустойчивым. Обязуется пузырек воздуха, который отрывается от капилляра и поднимается на поверхность. Жидкость затягивает отверстие. Далее все повторяется. На рис. 4 показано, как меняется радиус кривизны мениска жидкости, начиная с момента, когда он дошел до нижнего конца капилляра.

Из сказанного выше следует, что:

, (1)

где - внутренний радиус капилляра. Эту разность можно определить с помощью микроманометра, так как

где - плотность манометрической жидкости, - максимальное смещение уровня жидкости в наклонной трубке микроманометра, - угол между наклонным коленом микроманометра и горизонталью (см. рис. 2).

Из формул (1) и (2) получим:

. (3)

Так как глубина погружения капилляра в жидкость ничтожна , то ею можно пренебречь, тогда:

или , (4)

где - внутренний диаметр капилляра.

В том случае, когда жидкость не смачивает стенки капилляра, за в формуле (4) принимают внешний диаметр капилляра. В качестве манометрической жидкости в микроманометре используется вода ( = 1×10 3 кг/м 3).

ИЗМЕРЕНИЯ.

1. Налить в аспиратор воду до метки и закрыть его. Добиться равенства давлений в обоих коленах микроманометра, для чего на короткое время извлечь кран К. Установить его в такое положение, в котором он соединяет сосуд с аспиратором.

2. Открыть кран аспиратора настолько, чтобы изменение давления происходило достаточно медленно. Пузырьки воздуха должны отрываться примерно через каждые 10 - 15 с. После установления указанной частоты образования пузырьков можно проводить измерения.

ЗАДАНИЕ. 1. С помощью термометра определить и записать комнатную температуру t .

2. Девять раз определить максимальное смещение уровня жидкости в наклонном колене микроманометра. Для расчета коэффициента поверхностного натяжения взять среднее значение Н ср .

3. Аналогично определить коэффициент поверхностное натяжение этилового спирта.

4. Найти предельные абсолютную и относительную погрешности при определении поверхностного натяжения каждой жидкости. Записать для каждой жидкости окончательные результаты измерений с учетом их точности по формуле.

Давление - величина, равная отношению силы, действующей перпендикулярно поверхности, называется давлением. За единицу давления принимается такое давление, которое производит сила в 1Н, действующая на поверхность площадью 1м2 перпендикулярно этой поверхности.

Следовательно, чтобы определить давление, надо силу, действующую перпендикулярно поверхности, разделить на площадь поверхности.

Известно, что молекулы газа движутся беспорядочно. При своём движении они сталкиваются друг с другом, а также со стенками сосуда, в котором находится газ. Молекул в газе много, поэтому и число их ударов очень велико. Хотя сила удара отдельной молекулы мала, но действие всех молекул о стенки сосуда значительно, оно и создаёт давление газа. Итак, давление газа на стенки сосуда (и на помещённое в газ тело) вызывается ударами молекул газа.

При уменьшении объёма газа его давление увеличивается, а при увеличении объёма давление уменьшается при условии, что масса и температура газа остаются неизменными.

В любой жидкости молекулы не связаны жёстко, и поэтому жидкость принимает форму того сосуда, куда она налита. Как и твёрдые тела, жидкость оказывает давление на дно сосуда. Но в отличие от твёрдых тел, жидкость производит давление также и на стенки сосуда.

Для объяснения этого явления мысленно разделим столб жидкости на три слоя (a, b, c). При этом можно видеть, что и внутри самой жидкости существует давление: жидкость находится под давлением силы тяжести, и на нижние слои жидкости действует вес верхних её слоёв. Сила тяжести, действующая на слой а, прижимает его ко второму слою b. Слой b передаёт производимое на него давление во все стороны. Кроме того, на этот слой также действует сила тяжести, прижимающая его к третьему слою с. Следовательно, в третьем сдое давление возрастает, и оно будет наибольшим у дна сосуда.

Давление внутри жидкости зависит от её плотности.

Давление, производимое на жидкость или газ, передаётся без изменения в каждую точку объёма жидкости или газа. Это утверждение называют законом Паскаля.

За единицу давления в СИ принято давление, которое производит сила 1Н на перпендикулярную к ней поверхность площадью 1м2. Эта единица называется паскалем (Па).

Наименование единице давления дано в честь французского учёного Блёза Паскаля

Блёз Паскаль

Блёз Паскаль - французский математик, физик и философ, родился 19 июня 1623 года. Он был третьим ребёнком в семье. Его мать умерла, когда ему было только три года. В 1632 году семейство Паскаля, покинуло Клермонт и отправилось в Париж. Отец Паскаля имел хорошее образование и решил непосредственно передать его сыну. Отец решил, что Блёз не должен изучать математику до 15 лет, и все математические книги были удалены из их дома. Однако любопытство Блёза, толкнуло его на изучение геометрии в возрасте 12 лет. Когда это узнал отец, он смягчился и позволил Блёзу изучить Эвклида.

Блёз Паскаль внёс значительный вклад в развитие математики, геометрии, философии и литературы.

В физики Паскаль занимался изучение барометрического давления и вопросами гидростатики.

На основе закона Паскаля легко объяснить следующий опыт.

Берём шар, имеющий в различных местах узкие отверстия. К шару присоединена трубка, в которую вставлен поршень. Если набрать воды в шар и вдвинуть в трубку поршень, то вода польётся из всех отверстий шара. В этом опыте поршень давит на поверхность воды в трубке.

Закон Паскаля

Частицы воды, находящиеся под поршнем, уплотняясь, передаётся его давление другим слоям, лежащим глубже. Таким образом, давление поршня передаётся в каждую точку жидкости, заполняющей шар. В результате часть воды выталкивается из шара в виде струек, вытекающих из всех отверстий.

Если шар заполнить дымом, то при вдвигании поршня в трубку из всех отверстий шара начнут выходить струйки дыма. Это подтверждает, (что и газы передают производимое на них давление во все стороны одинаково). Итак, опыт показывает, что внутри жидкости существует давление и на одном и том же уровне оно одинаково по всем направлениям. С глубиной давление увеличивается. Газы в этом отношении не отличаются от жидкостей.

Закон Паскаля справедлив для жидкостей и газов. Однако он не учитывает одного важного обстоятельства - существования веса.

В земных условиях этого нельзя забывать. Весит и вода. Поэтому понятно, что две площадки, находящиеся на разной глубине под водой, будут испытывать разные давления.

Давление воды, обусловленное её тяжестью, называют гидростатическим.

В земных условиях на свободную поверхность жидкости чаще всего давит воздух. Давление воздуха называют атмосферным. Давление на глубине складывается из атмосферного и гидростатического.

Если два сосуда разной формы, но с одинаковыми уровнями воды в них соединить трубкой, то вода не будет переходить из одного сосуда в другой. Такой переход мог бы произойти в том случае, если бы давления в сосудах различались. Но этого нет, и в сообщающихся сосудах независимо от их формы жидкость всегда будет находиться на одном уровне.

Например, если уровни воды в сообщающихся сосудах различны, то вода начнёт перемещаться, и уровни сравняются.

Давление воды много больше давления воздуха. На глубине 10м вода давит на 1см2 с дополнительной к атмосферному давлению силой в 1кГ. На глубине в километр - с силой в 100кГ на 1см2.

Океан в некоторых местах имеет глубину более 10км. Силы давления воды на таких глубинах исключительно велики. Куски дерева, опущенные на глубину 5км, уплотняются этим огромным давлением настолько, что после такого > тонут в бочке с водой, как кирпичи.

Это огромное давление создаёт большие препятствия исследователям жизни моря. Глубоководные спуски производятся в стальных шарах - так называемых батисферах, или батискафах, которым приходится выдерживать давление выше 1 тонны на 1см2.

Подводные же лодки опускаются лишь на глубину 100 - 200м.

Давление жидкости на дно сосуда зависит от плотности и высоты столба жидкости.

Измерим давление воды на дно стакана. Конечно, дно стакана деформируется под действием сил давления, и зная величину деформации, мы могли бы определить величину вызвавшей её силы и рассчитать давление; но эта деформация настолько мала, что измерить её непосредственно практически невозможно. Так как судить по деформации данного тела о давлении, оказываемом на него жидкостью, удобно лишь в том случае, когда деформации точно велики, то для практического определения давления жидкости пользуются специальными приборами - манометрами, в которых деформация имеет сравнительно большую, легко измеримую величину. Простейший мембранный манометр устроен следующим образом. Тонкая упругая пластина мембрана - герметически закрывает пустую коробку. К мембране присоединён указатель, вращающийся около оси. При погружении прибора в жидкость мембрана прогибается под действием сил давления, и её прогиб передаётся в увеличенном виде указателю, передвигающемуся по шкале.

Манометр

Каждому положению указателя соответствует определённый прогиб мембраны, а следовательно, и определённая сила давления на мембрану. Зная площадь мембраны, можно от сил давления перейти к самим давлениям. Можно непосредственно измерить давление, если заранее проградуировать манометр, то есть определить, какому давлению соответствует то или иное положение указателя на шкале. Для этого нужно подвергнуть манометр действию давлений, величина которых известна и, замечая положение стрелки указателя, проставить соответственные цифры на шкале прибора.

Воздушную оболочку, окружающую Землю, называют атмосферой. Атмосфера, как показали наблюдения за полётом искусственных спутников Земли, простирается на высоту несколько тысяч километров. Мы живём на дне огромного воздушного океана. Поверхность Земли - дно этого океана.

Вследствие действия силы тяжести верхние слои воздуха, подобно воде океана, сжимают нижние слои. Воздушный слой, прилегающий непосредственно к Земле, сжат больше всего и согласно закону Паскаля передаёт производимое на него давление по всем направлениям.

В результате этого земная поверхность и тела, находящиеся на ней, испытывают давление всей толщи воздуха, или, как обычно говорят, испытывают атмосферное давление.

Атмосферное давление не такое маленькое. На каждый квадратный сантиметр поверхности тела действует сила около 1кГ.

Причина атмосферного давления очевидна. Как и вода, воздух обладает весом, а значит, оказывает давление, равное (как и для воды) весу столба воздуха, находящегося над телом. Чем выше мы будем подниматься в гору, тем меньше воздуха будет над нами, а значит, тем меньше станет и атмосферное давление.

Для научных и житейских целей нужно уметь измерять давление. Для этого существуют специальные приборы - барометры.

Барометр

Изготовить барометр нетрудно. В трубку, закрытую с одного конца, наливают ртуть. Зажав пальцем открытый конец, опрокидывают трубку и погружают её открытым концом в чашку с ртутью. При этом ртуть в трубке опускается, но не выливается. Пространство над ртутью в трубке несомненно безвоздушное. Ртуть поддерживается в трубке давлением наружного воздуха.

Каких бы размеров мы не брали чашечку со ртутью, какого бы диаметра ни была трубка, ртуть всегда поднимается примерно на одну и ту же высоту - 76см.

Если взять трубку короче 76см, то она полностью заполниться ртутью, и мы не увидим пустоты. Столб ртути высотой 76см давит на подставку с той же силой, что и атмосфера.

Один килограмм на один квадратный сантиметр - это и есть величина нормального атмосферного давления.

Цифра 76см означает, что таким столбиком ртути уравновешивается столб воздуха всей атмосферы, расположенной над такой же площадкой.

Барометрической трубке можно придать самые различные формы, важно лишь одно: один конец трубки должен быть закрыт так, чтобы над поверхностью ртути не было воздуха. На другой уровень ртути действует давление атмосферы.

Ртутным барометром можно измерить атмосферное давление с очень большой точностью. Разумеется, не обязательно брать ртуть, годится и любая другая жидкость. Но ртуть - наиболее тяжёлая жидкость, и высота столба ртути при нормальном давлении будет наименьшей.

Для измерения давления пользуются различными единицами. Часто просто указывают высоту столба ртути в миллиметрах. Например, говорят, что сегодня давление выше нормы, оно равно 768мм рт. ст.

Давление в 760мм рт. ст. называют иногда физической атмосферой. Давление в 1кГ/см2 называют технической атмосферой.

Ртутный барометр - не особенно удобный прибор. Нежелательно поверхность ртути оставлять открытой (ртутные пары ядовиты), кроме того, прибор не портативен.

Этих недостатков нет у металлических барометров - анероидов.

Такой барометр все видели. Это небольшая круглая металлическая коробка со шкалой и стрелкой. На шкалу нанесены величины давления, обычно в сантиметрах ртутного столба.

Из металлической коробки выкачан воздух. Крышка коробки удерживается сильной пружиной, так как иначе она была бы вдавлена атмосферным давлением. При изменении давления крышка либо прогибается, либо выпячивается. С крышкой соединена стрелка, причём так, что при вдавливании стрелка идёт вправо.

Такой барометр градуируется сравнением его показаний со ртутным.

Если вы хотите узнать давление, не забудьте постучать пальцем по барометру. Стрелка циферблата испытывает большое трение и обычно застревает на >.

На атмосферном давлении основано простое устройство - сифон.

Шофёр хочет помочь своему товарищу, у которого кончился бензин. Как же отлить бензин из бака своей автомашины? Не наклонять же её, как чайник.

На помощь приходит резиновая трубка. Один конец её опускают в бензобак, а из другого конца ртом отсасывают воздух. Затем быстрое движение - открытый конец зажимают пальцем и устанавливают на высоте ниже бензобака. Теперь палец можно отнять - бензин будет выливаться из шланга.

Изогнутая резиновая трубка и есть сифон. Жидкость в этом случае движется по той же причине, что и в прямой наклонной трубке. В обоих случаях жидкость в конечном счёте течёт вниз.

Для действия сифона необходимо атмосферное давление: оно > жидкость и не даёт столбу жидкости в трубке разорваться. Если бы атмосферного давления не было, столб разорвался бы в точке перевала, и жидкость скатилась бы в оба сосуда.

Сифон давления

Сифон начинает работать, когда жидкость в правом (так сказать, >) колене опустится ниже уровня перекачиваемой жидкости, в которую опущен левый конец трубки. В противном случае жидкость уйдёт обратно.

В практике для измерения атмосферного давления используют металлический барометр, называемый анероидом (в переводе с греческого - без жидкостный. Так барометр называют потому, что он не содержит ртути).

Атмосфера удерживается силой тяжести, действующей со стороны Земли. Под действием этой силы верхние слои воздуха давят на нижние, поэтому слой воздуха, прилегающий к Земле, оказывается наиболее сжатым и наиболее плотным. Это давление в соответствии с законом Паскаля передаётся во все стороны и действует на все тела, находящиеся на Земле, и на её поверхность.

Толщина слоя воздуха, давящая на Землю, с высотой уменьшается, следовательно, уменьшается и давление.

На существование атмосферного давления указывает множество явлений. Если стеклянную трубку с опущенным поршнем поместить в сосуд с водой и плавно поднимать, то вода следует за поршнем. Атмосфера давит на поверхность воды в сосуде; по закону Паскаля это давление передаётся воде под стеклянной трубкой и гонит воду вверх, вслед за поршнем.

Ещё древней цивилизации были известны всасывающие насосы. С их помощью можно было поднять воду на значительную высоту. Вода удивительно послушно следовала за поршнем такого насоса.

Древние философы задумались о причинах этого и пришли к такому глубокомысленному заключению: вода следует за поршнем потому, что природа боится пустоты, поэтому-то между поршнем и водой не остаётся свободного пространства.

Рассказывают, что один мастер построил для садов герцога Тосканского во Флоренции всасывающий насос, поршень которого должен был затягивать воду на высоту более 10м. Но как ни старались засосать этим насосом воду, ничего не получалось. На 10м вода поднималась за поршнем, дальше поршень отходил от воды, и образовывалась та самая пустота, которой природа боится.

Когда с просьбой объяснить причину неудачи обратились к Галилею, он ответил, что природа действительно не любит пустоты, но до определённого предела. Ученик Галилея Торричелли, очевидно, использовал этот случай как повод для того, чтобы поставить в 1643 году свой знаменитый опыт с трубкой, наполненный ртутью. Этот опыт мы только что описали - изготовление ртутного барометра и есть опыт Торричелли.

Взяв трубку высотой более 76мм, Торричелли создал пустоту над ртутью (её часто называют в честь торричеллиевой пустоты) и таким образом доказал существование атмосферного давления.

Этим опытом Торричелли разрешил недоумение мастера Тосканского герцога. Действительно, ясно на протяжении скольких метров вода будет покорно следовать за поршнем всасывающего насоса. Это движение будет продолжаться до тех пор, пока столб воды площадью 1см2 не станет равным по весу 1кГ. Такой столб воды будет иметь высоту 10м. Вот почему природа боится пустоты. , но более чем до 10м.

В 1654 году, спустя 11 лет после открытия Торричелли, действие атмосферного давления было наглядно показано магдебургским бургомистром Отто фон Герике. Известность принесла автору не столько физическая сущность опыта, сколько театральность его постановки.

Два медных полушария были соединены кольцевой прокладкой. Через кран, приделанный к одному из полушариев, из составленного шара был выкачан воздух, после чего полушария невозможно было разнять. Сохранилось подробное описание опыта Герике. Давление атмосферы на полушария можно сейчас рассчитать: при диаметре шара 37см сила равнялась примерно одной тонне. Чтобы разъединить полушария, Герике приказал запрячь две восьмёрки лошадей. К упряжи шли канаты, продетые через кольцо, прикреплённые к полушариям. Лошади оказались не в силах разъединить полушария.

Силы восьми лошадей (именно восьми, а не шестнадцати, так как вторая восьмёрка, запряжённая для пущего эффекта, могла быть заменена крюком, вбитым в стену, с сохранением той же силы, действующей на полушария) было недостаточно для разрыва магдебургских полушарий.

Если между двумя соприкасающимися телами имеется пустая полость, то эти тела не будут распадаться благодаря атмосферному давлению.

На уровне моря значение атмосферного давления обычно равно давлению столбика ртути высотой 760мм.

Измеряя атмосферное давление барометром, можно обнаружить, что оно уменьшается с увеличением высоты над поверхностью Земли (примерно на 1мм рт. ст. при подъёме в высоту на 12м). Также изменения атмосферного давления связано с изменениями погоды. Например, повышение атмосферного давления связывают с наступлением ясной погоды.

Значение атмосферного давления весьма важно для предсказания погоды на ближайшие дни, так как изменение атмосферного давления связано с изменениями погоды. Барометр - необходимый прибор при метеорологических наблюдениях.

Колебания давления от погоды имеют очень нерегулярный характер. Когда-то думали, что только одно давление и определяет погоду. Поэтому на барометрах ещё и до сих пор ставятся надписи: ясно, сухо, дождь, буря. Встречается даже надпись: >.

Изменение давления действительно играет большую роль в изменениях погоды. Но эта роль не решающая.

С распределением атмосферного давления связаны направление и сила ветра.

Давление в разных местах земной поверхности неодинаково, и более сильное давление > воздух в места с более низким давлением. Казалось бы, ветер должен дуть в направлении, перпендикулярном к изобарам, то есть туда, где давление падает наиболее быстро. Однако карты ветров показывают иное. В дела воздушного давления вмешивается кориолисова сила и вносит свою поправку, очень значительную.

Как нам известно, на любое тело, движущееся в северном полушарии, действует кориолисова сила, направленная вправо по движению. Это относится и к частицам воздуха. Выжимаемая из мест большего давления к местам, где давление поменьше, частица должна двигаться поперёк изобар, но кориолисова сила отклоняет её вправо, и направление ветра образует угол примерно в 45 градусов с направлением изобар.

Поразительно большой эффект для такой маленькой силы. Это объясняется тем, что помехи действию силы Кориолиса - трение воздушных слоёв - также очень незначительны.

Ещё более интересно влияние силы Кориолиса на направление ветров в > и > давления. Из-за действия кориолисовой силы воздух, отходя от > давления, не стекает во все стороны по радиусам, а движется по кривым линиям - спиралям. Эти спиральные воздушные потоки закручиваются в одну и ту же сторону и создают в области давления круговой вихрь, перемещающий воздушные массы по часовой стрелке.

То же самое происходит и в области пониженного давления. При отсутствии силы Кориолиса воздух стекался бы к этой области равномерно по всем радиусам. Однако по дороге воздушные массы отклоняются вправо.

Ветры в области низкого давления называются циклонами, ветры в области высокого давления называются антициклонами.

Не надо думать, что всякий циклон означает ураган или бурю. Прохождение циклонов или антициклонов через город, где мы живём, - обычное явление, связанное, правда, большей частью с переменной погоды. Во многих случаях приближение циклона означает наступление ненастья, а приближение антициклона - наступление хорошей погоды.

Впрочем, мы не будем становиться на путь прорицателей погоды.