Что понимается под прочностью. Основные понятия о прочности Что такое жесткость

Работоспособность - состояние детали, при котором она способна вы­полнять заданные функции с параметрами, установленными требованиями нормативно-технической документации.

Основными критериями работоспособности деталей машин являются прочность, жесткость, износостойкость, теплостойкость, виброустойчи­вость. Кратко рассмотрим эти требования.

0.6. Прочность является главным критерием работоспособности дета­лей. Методы расчетов на прочность изучают в курсе «Сопротивление мате­риалов».

Прочность - свойство материалов детали в определенных условиях и пре­делах, не разрушаясь, воспринимать те или иные воздействия (нагрузки, не­равномерные температурные поля и др.).

В большинстве технических расчетов под нарушением прочности по­нимают не только разрушение, но и возникновение пластических дефор­маций.

Наиболее распространенным методом оценки прочности деталей ма­шин является сравнение расчетных (рабочих) напряжений, возникающих в деталях машин под действием нагрузок, с допускаемыми.

Условие прочности выражают неравенством

σ≤ [σ] или τ ≤ [τ], (0.1)

где σ, τ - расчетные нормальное и касательное напряжения в опасном се­чении детали; [σ], [τ] - допускаемые напряжения.

Кроме обычных видов разрушения деталей (поломок) наблюдаются также случаи, когда под действием нагрузок, прижимающих детали одну к другой, возникают местные напряжения и деформации. Наличие контакт­ных напряжений может привести к разрушению деталей. Поэтому для мно­гих деталей (а зависит это от конструкции, воспринимаемых нагрузок, ус­ловий работы и других факторов) проводится расчет по условию контакт­ной прочности:

Σ H ≤ [σ] H ; (0.2)

(формула Герца), (0.3)

где - расчетное контактное напряжение; q - нагрузка на единицу длины контакта; E пр - приведенный модуль упругости; - приведен­ный радиус кривизны; [σ] н - допускаемое контактное напряжение.

Эта формула получена для двух круговых цилиндров бесконечно боль­шой длины, материалы которых имеют коэффициент Пуассона µ = 0,3.

Что понимается под прочностью детали?

0.7. Жесткостью называют способность деталей сопротивляться измене­нию их формы под действием приложенных нагрузок.

Наряду с прочностью это один из важнейших критериев работоспособ­ности машин. Иногда размеры деталей (таких, как длинные оси, валы и т. п.) окончательно определяются расчетом на жесткость.

Запишите условие, обеспечивающее жесткость работающей детали (вспомните из курса «Сопротивление материалов»).

0.8. Износостойкость - сопротивление деталей машин и других трущих­ся изделий изнашиванию.

Изнашивание - процесс разрушения поверхностных слоев при трении, приводящий к постепенному изменению размеров, формы, массы и со­стояния поверхности деталей (износу).

Износ - результат процесса изнашивания.

При расчетах деталей на износ либо определяют условия, обеспечиваю­щие для них трение со смазочным материалом, либо назначают для тру­щихся поверхностей соответствующие допускаемые давления.

Изнашивание деталей можно уменьшить следующими конструктивны­ми, технологическими и эксплуатационными мерами:

Создать при проектировании деталей условия, гарантирующие трение со смазочным материалом;

Выбрать соответствующие материалы для сопряженной пары;

Соблюдать технологические требования при изготовлении деталей;

Наносить на детали покрытия;

Соблюдать режимы смазывания и защиты трущихся поверхностей от абразивных частиц.

Что такое износ? Укажите пути уменьшения изнашивания трущихся де­талей.

0.9. Под теплостойкостью понимают способность деталей сохранять нормальную работоспособность в допустимых (заданных) пределах темпера­турного режима, вызываемого рабочим процессом машин и трением в их меха­низмах.

Тепловыделение, связанное с рабочим процессом, имеет место в тепло­вых двигателях, электрических машинах, литейных машинах и в машинах для горячей обработки материалов.

Нагрев деталей машин может вызвать следующие вредные последствия:

Понижение прочности материала и появление остаточных деформа­ций, так называемое явление ползучести (наблюдается в машинах с очень напряженным тепловым режимом, например, в лопатках газо­вых турбин);

Понижение защищающей способности масляных пленок, а следова­тельно, увеличение износа трущихся деталей;

Изменение зазоров в сопряженных деталях;

В некоторых случаях понижение точности работы машины;

Для деталей, работающих в условиях многократного циклического изменения температуры, могут возникнуть и развиться микротрещи­ны, приводящие в отдельных случаях к разрушению деталей.

Для обеспечения нормального теплового режима работы деталей и уз­лов машин в ряде случаев выполняют специальные расчеты, например, те­пловой расчет червячных редукторов.

Что произойдет с деталью, если в процессе работы температура будет выше предельно допустимой?

0.10. Под виброустойчивостью понимают способность деталей и узлов работать в нужном режиме без недопустимых колебаний (вибраций).

Вибрации вызывают дополнительные переменные напряжения и могут привести к усталостному разрушению деталей. Особенно опасными явля­ются резонансные колебания. В связи с повышением скоростей движения машин опасность вибрации возрастает, поэтому расчеты параметров выну­жденных колебаний приобретают все большее значение.

Первая задача сопромата – это расчет элементов конструкции на . Под нарушением прочности понимается не только разрушение конструкции, но и возникновение в ней больших пластических деформаций. Говоря о достаточной прочности конструкции, полагают, что прочность будет обеспечена не только при заданном значении , но и при некотором увеличении нагрузки, то есть конструкция должна иметь определенный запас прочности.

Вторая задача сопромата

Второй задачей сопромата стал расчет элементов конструкции на жесткость.

Жесткость – это способность конструкции (или материала) сопротивляться деформированию. Иногда конструкции, отвечающей условию прочности, может воспрепятствовать нормальной ее эксплуатации. В этом случае говорят, что конструкция имеет недостаточную жесткость .

Третья задача сопромата

Третьей задачей сопромата является расчет устойчивости элементов конструкции.

Устойчивость – это способность конструкции сохранять положение равновесия, отвечающее действующей на нее . Положение равновесия конструкции устойчиво в том случае, если, получив малое отклонение (возмущение) от этого положения равновесия, конструкция снова к нему возвращается.

Проблема устойчивости возникает, в частности, при расчете сжатых колонн. Может случиться так, что при критической нагрузке колонна, отвечающая и , и , внезапно изогнется (потеряет устойчивость). Это может привести к разрушению всей конструкции.

Таким образом, сопромат – это дисциплина, в которой даются теоретические основы расчета простейших элементов конструкции (как правило, стержней) на прочность, жесткость и устойчивость .

В зависимости от назначения конструкции и условий ее эксплуатации к ее материалу предъявляются требования определенных свойств: коррозионных, магнитных, жаростойких и т.п.

Однако, почти для всех конструкций наиболее важным требованиям является прочность.

Что же понимается под прочностью?

Под прочностью в широком (инженерном) смысле слова понимают способность материала или элемента конструкции сопротивляется не только разрушению, но и наступлению текучести, потери устойчивости, распространению трещин и др.

В более узком, научном смысле слова под прочностью понимают не только сопротивление разрушению.

В соответствии с этими двумя понятиями создаются гипотезы, дающие объяснение наступлению каких-либо предельных состояний металла или детали.

Инженерных теорий прочности в настоящее время выдвинуто много (1-я,2-я,3-я,4-я теории прочности). Например, согласно 4-й (энергетической) теории «Пластическое состояние (или разрушение) наступает тогда, когда удельная энергия формоизменения достигает некоторого предельного значения» (гипотеза Губера-Мизеса-Генки). Тогда условие наступление текучести будет

Если в качестве предельного состояния какого-либо элемента принять наступление текучести, то соответствующая расчетная формула будет выглядеть так

Обычно берут не

Тогда

Практически по всем инженерным теориям прочности условие прочности для заданного вида нагружения будет записываться в виде

Означает ли это, что в случае, например

(т.е. в инженерном смысле произошла потеря прочности) наступает разрушение конструкции. Поэтому не следует отождествлять потерю прочности в инженерном понимании с наступлением разрушения детали.

Современные технические материалы имеют сложное, неоднородное строение. Материалы обычно разделяются на вязкие (или пластичные) и хрупкие. Вязкие разрушения происходят при больших, а хрупкие – при сравнительно малых деформациях. Из-за различия свойств материалов мы можем получить и различные виды разрушений.

Прочность, жесткость, устойчивость, – как понятия определяющие надёжность конструкций в их сопротивлении внешним воздействиям. Расчётные схемы (модели): твёрдого деформируемого тела, геометрических форм элементов конструкций. Внутренние силы в деформируемых телах и их количественные меры. Метод сечений. Напряжённое состояние. Перемещения и деформации. Понятия упругости и пластичности. Линейная упругость (закон Гука). Принцип независимости действия сил (принцип суперпозиции).

Основные понятия. Сопротивление материалов, наука о прочности (способности сопротивляться разрушению при действии сил) и деформируемости (изменении формы и размеров) элементов конструкций сооружений и деталей машин. Таким образом, данный раздел механики дает теоретические основы расчета прочности, жесткости и устойчивости инженерных конструкций.

Под нарушением прочности понимается не только разрушение конструкции, но и возникновение в ней больших пластических деформаций. Пластическая деформация – это часть деформации, которая не исчезает при разгрузке, а пластичность - способность материала сохранять деформацию.

Жесткость – это способность конструкции (или материала) сопротивляться деформированию.

Устойчивость – это способность конструкции сохранять положение равновесия, отвечающее действующей на нее нагрузке.

Надежность – свойство конструкции выполнять заданные функции, сохраняя свои эксплуатационные показатели в определенных нормативных пределах в течение требуемого промежутка времени.

Ресурс – допустимый срок службы изделия. Указывается в виде общего времени наработки или числа циклов нагружения конструкции.

Отказ – нарушение работоспособности конструкции.

Опираясь на вышесказанное, можно дать определение прочностной надежности.

Прочностной надежностью называется отсутствие отказов, связанных с разрушением или недопустимыми деформациями элементов конструкции.

Конструкции, как правило, имеют сложную форму, отдельные элементы которой можно свести к простейшим типам, являющимися основными объектами изучения сопротивления материалов: стержни, пластинки, оболочки, массивы, для которых устанавливаются соответствующие методы расчёта на прочность, жёсткость и устойчивость при действии статических и динамических нагрузок, т.е. расчет реальной конструкции начинается с выбора расчетной схемы .

Выбор расчетной схемы начинается со схематизации свойств материала и характера деформирования твердого тела, затем выполняется схематизация геометрической.

Стержень – тело, у которого один размер (длина) значительно превышает два других размера.

Оболочка – это тело, ограниченное двумя криволинейными поверхностями, у которого один размер (толщина) много меньше двух других размеров. Пластина – это тело, ограниченное двумя параллельными плоскостями.

Массив – тело, у которого все три размера имеют один порядок.

Базируясь на законах и выводах теоретической механики, сопротивление материалов, помимо этого, учитывает способность реальных материалов деформироваться под действием внешних сил.

При выполнении расчетов принимаются допущения, связанные со свойствами материалов и с деформацией тела.

Основные допущения.

1. Материал считается однородным (независимо от его микроструктуры физико-механические свойства считаются одинаковыми во всех точках).

2. Материал полностью заполняет весь объем тела, без каких-либо пустот (тело рассматривается как сплошная среда).

3. Обычно сплошная среда принимается изотропной, т.е. пред­полагается, что свойства тела, выделенного из нее, не зависят от его ориентации в пределах этой среды. Материалы, имеющие различные свойства в разных направлениях, называют анизотропными (например, дерево).

4. Материал является идеально упругим (после снятия нагрузки все деформации полностью исчезают, т.е. геометрические размеры тела полностью или частично восстанавливаются). Свойство тела восстанавливать свои первоначальные размеры после разгрузки называется упругостью.

5. Деформации тела считаются малыми по сравнению с его размерами. Это допущение называется принципом начальных размеров. Допущение позволяет при составлении уравнений равновесия пренебречь изменениями формы и размеров конструкции.

6. Перемещения точек тела пропорциональны нагрузкам, вызывающим эти перемещения (до определенной величины деформации материалов подчиняются закону Гука). Для линейно деформируемых конструкций справедлив принцип независимости действия сил (или принцип суперпозиции ): результат действия группы сил не зависит от последовательности нагружения ими конструкции и равен сумме результатов действия каждой из этих сил в отдельности.

7. Предполагается, что в сечениях, достаточно удаленных от мест приложения нагрузки, характер распределения напряжений не зависит от конкретного способа нагружения. Основанием для такого утверждения служит принцип Сен-Венана.

8.Принимается гипотеза плоских сечений (гипотеза Бернулли): плоские поперечные сечения стержня до деформации остаются плоскими и после деформации.

Внутри любого материала имеются внутренние межатомные силы. При деформации тела изменяются расстояния между его частицами, что в свою очередь приводит к изменению сил взаимного притяжения между ними. Отсюда, как следствие, возникают внутренние усилия. Для определения внутренних усилий используют метод сечения. Для этого тело мысленно рассекают плоскостью и рассматривают равновесие одной из его частей (рис.1).