Атомная электростанция в Беларуси (Островец). Плюсы и минусы атомной энергетики. "плюсы" и "минусы" аэс

Муниципальное казённое общеобразовательное учреждение

Климщинская средняя школа

Атомная энергетика: плюсы и минусы

исследовательская работа по физике

Серков Вадим,

обучающийся 10 класса

Руководитель: Голубцова Ирина

Викторовна, учитель физики

Климщина

2016

Оглавление

I .Введение.........................................................................................................3

II .Основная часть

    Атомная энергетика……………………………………………………4

1.1.Получение атомной энергии………………………………………4

1.2. История развития атомной энергетики…………………………..7

1.3.Экономическое значение энергетики……………………………10

1.4. Объёмы производства атомной электроэнергии. ………..……12

1.5.Плюсы атомной энергетики……………………………………...14

1.6.Минусы атомной энергетики…………………………………….15

2.Результаты социологического опроса…………………………………19

III .Заключение……………………………………………………………..22

IV .Список использованной литературы………………………………….24

Введение

26 апреля исполняется 30 лет со дня катастрофы на Чернобыльской АЭС.

В небо взлетело и рассеялось огромное количество радиоактивных веществ. Люди в Чернобыле подверглись облучению в 90 раз большему, чем при падении бомбы на Хиросиму. По подсчетам Российской академии наук, чернобыльская катастрофа обернулась гибелью 60 тысяч человек в России и 140 тысяч в Беларуси и Украине.30 лет – большой срок для человека, но не для человечества. Эта трагедия заставила людей задуматься: «Атомная энергия-это добро или зло?»

Я тоже попытался найти ответ на этот вопрос, чтобы в дальнейшем помочь разобраться в нём моим сверстникам.

Цель исследования: выявить отношение людей к атомной энергетике.

Задачи:

- изучение процессов получения атомной энергии

Изучение истории развития атомной энергетики

Изучение значения атомной энергетики

Выявление проблем атомной энергетики

Разработка диагностического материала по проблеме исследования

Проведение соц.опроса среди людей разного возраста

Анализ результатов соц.опроса

Предмет исследования: отношение человека к вопросам атомной энергетики

1.Атомная энергетика

1.1.Получение атомной энергии

Атомная энергетика ( ядерная энергетика ) - это отрасль энергетики , занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии.

Обычно для получения ядерной энергии используют или . Ядра делятся при попадании в них , при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой . В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в .

Топливный цикл

Атомная энергетика основана на использовании , совокупность промышленных процессов которого составляют топливный ядерный цикл. Хотя существуют различные типы топливных циклов, зависящие как от типа реактора, так и от характеристик конечной стадия цикла, в целом у него существуют общие этапы.

    Добыча урановой руды.

    Измельчение урановой руды

    Отделение диоксида урана, т. н. жёлтого хека, идущих в отвал.

    Преобразование в газообразный .

    Процесс повышения концентрации урана-235, производится на специальных заводах по разделению изотопов.

    Обратное превращение гексафторида урана в диоксид урана в виде топливных таблеток.

    Изготовление из таблеток тепловыделяющих элементов (сокр. ), которые в скомпанованном виде вводятся в активную зону ядерного реактора АЭС.

    Извлечение .

    Охлаждение отработанного топлива.

    Захоронение отработанного топлива в специальном хранилище.

В ходе эксплуатации в процессах технического обслуживания удаляются образующиеся низкорадиоактивные отходы. С окончанием срока службы производится самого реактора, демонтаж сопровождается дезактивацией и удалением в отходы деталей реактора.

Ядерный реактор

Ядерный реактор - устройство, предназначенное для организации управляемой самоподдерживающейся , которая всегда сопровождается выделением энергии.

Первый ядерный реактор построен и запущен в декабре 1942 года в под руководством . Первым реактором, построенным за пределами США, стал , запущенный в . В Европе первым ядерным реактором стала установка , заработавшая в Москве под руководством . К в мире работало уже около сотни ядерных реакторов различных типов.

Существуют разные типы реакторов, основные отличия в них обусловлены используемым топливом и теплоносителем, применяемым для поддержания нужной температуры активной зоны, и замедлителем, используемым для снижения скорости нейтронов, которые выделяются в результате распада ядер, для поддержания нужной скорости цепной реакции.

    Наиболее распространенным типом является легководный реактор, использующий в качестве топлива обогащённый уран, в нём в качестве и теплоносителя, и замедлителя используется обычная или «легкая» вода. У него есть две основные разновидности:

    1. Где пар, вращающий , образуется непосредственно в активной зоне.

      Где пар образуется в контуре, связанном с активной зоной теплообменниками и парогенераторами.

    С графитовым замедлителем получил широкое распространения благодаря возможности эффективно вырабатывать оружейный плутоний и возможности использовать необогащённый уран.

    В в качестве и теплоносителя, и замедлителя используется тяжелая вода, а топливом является необогащённый уран, используется в основном в Канаде, имеющей собственные месторождения урановых руд.

1.2.История развития атомной энергетики

Впервые цепная реакция ядерного распада была осуществлена 2 декабря 1942 году в с использованием урана в качестве топлива и графита в качестве замедлителя. Первая электроэнергия из энергии ядерного распада была получена 20 декабря 1951 года в Национальной лаборатории Айдахо с помощью реактора на быстрых нейтронах EBR-I (Experimental Breeder Reactor-I). Произведённая мощность составляла около 100 кВт.

9 мая 1954 года на ядерном реакторе в г. была достигнута устойчивая цепная ядерная реакция. Реактор мощностью 5 МВт работал на обогащённом уране с графитом в качестве замедлителя, для охлаждения использовалась вода с обычным изотопным составом. 26 июня в 17:30 энергия, выработанная здесь, стала поступать в потребительскую .

А́томная электроста́нция (АЭС) - для производства в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используются (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (), предназначенная для производства электрической энергии).

Атомная транспортная энергетика

Атомоход (атомное судно) - общее название с , обеспечивающей ход судна. Различают атомоходы гражданские ( , транспортные суда) и ( , тяжёлые).

Военные корабли - атомные и , и первый в мире авианосец , самое длинное в мире военное , в 1964 году во время рекордного кругосветного путешествия, в течение которого они преодолели 49,190 км за 65 дней без дозаправки.

В декабре 1954 года в вошла в строй первая .

Российский 1994 г.

В 1958 начала выдавать электроэнергию первая очередь второй советской АЭС - , мощностью 100 Мвт. В 1959 году в спущено на воду первое в мире невоенное атомное судно - .

Атомная энергетика, как новое направление в энергетике, получила признание на проходившей в Женеве в августе 1955 года 1-й Международной научно-технической конференции по мирному использованию атомной энергии, положившей начало международному сотрудничеству в области мирного использования ядерной энергии.

В начале 1970-х годов существовали видимые предпосылки для развития ядерной энергетики. Потребность в электроэнергии росла, гидроэнергетические ресурсы большинства развитых стран были практически полностью задействованы, соответственно росли цены на основные виды топлива.

В 1975 году в Смоленской области (г.Десногорск) было начато строительство атомной электростанции, которая была введена в эксплуатацию в 1982 году.

В промышленной эксплуатации на САЭС находится три с уран-графитовыми канальными реакторами . Электрическая мощность каждого энергоблока - 1 ГВт, тепловая 3,2 ГВт. Энергоблоки с реакторами РБМК-1000 одноконтурные. Связь с осуществляется шестью напряжением 330 кВ (Рославль-1, 2), 500 кВ ( , ), 750 кВ (Ново-Брянская, Белорусская).

1.3.Экономическое значение атомной энергетики

Доля атомной энергетики в общем производстве электроэнергии в различных странах.

В 2014 году ядерная энергия обеспечивала 2,6 % всей потребляемой человечеством энергии. Ядерный сектор энергетики наиболее значителен в промышленно развитых странах, где недостаточно природных во , и . Эти страны производят от 20 до 74 % (во Франции) электроэнергии на .

В 2013 году мировое производство ядерной энергии выросло впервые с 2010 года - по сравнению с 2012 годом произошёл рост на 0,5 % - до 6,55 млрд МВт ч (562,9 млн тонн нефтяного эквивалента). Наибольшее потребление энергии атомных станций в 2013 году составило в США - 187,9 млн тонн нефтяного эквивалента. В России потребление составило 39,1 млн тонн нефтяного эквивалента, в Китае - 25 млн тонн нефтяного эквивалента, в Индии - 7,5 млн тонн.

Согласно отчёту (МАГАТЭ), на 2013 год насчитывалось436 действующих ядерных энергетических , то есть производящих утилизируемую электрическую и/или тепловую энергию, реакторов в 31 стране мира (кроме энергетических, существуют также исследовательские и некоторые другие).

Примерно половина мирового производства электроэнергии на АЭС приходится на две страны - США и Францию. на АЭС производят только 1/8 своей электроэнергии, однако это составляет около 20 % мирового производства.

Абсолютным лидером по использованию ядерной энергии являлась . Единственная , расположенная на её территории, вырабатывала электрической энергии больше, чем потребляла вся республика (например, в 2003 году в Литве всего было выработано 19,2 млрд , из них - 15,5 Игналинской АЭС). Обладая её избытком (а в Литве есть и другие электростанции), «лишнюю» энергию отправляли на экспорт.
Однако, под давлением (из-за сомнений в её безопасности - ИАЭС использовала энергоблоки того же типа, что и ), с Игналинская АЭС была окончательно закрыта (предпринимались попытки добиться продолжения эксплуатации станции и после 2009 года, но они не увенчались успехом), сейчас решается вопрос о строительстве на той же площадке АЭС современного типа.

1.4.Объёмы производства атомной электроэнергии по странам

Страны с атомными электростанциями.

Эксплуатируются АЭС, строятся новые энергоблоки. Эксплуатируются АЭС, планируется строительство новых энергоблоков. Нет АЭС, станции строятся. Нет АЭС, планируется строительство новых энергоблоков. Эксплуатируются АЭС, строительство новых энергоблоков пока не планируется. Эксплуатируются АЭС, рассматривается сокращение их количества. Гражданская ядерная энергетика запрещена законом. Нет АЭС.

На 2014 год суммарно АЭС мира выработали 2,410 энергии, что составило 10,8 % всемирной генерации электричества.

Мировыми лидерами в производстве ядерной электроэнергии на 2014 год являются:

Все наслышаны о главном недостатке АЭС – о тяжелых последствиях аварий на атомных станциях. Десятки тысяч погибших и множество смертельно заболевших людей, мощное радиационное облучение, влияющее на здоровье человека и его потомков, города, ставшие непригодными для жизни… список, к сожалению, можно продолжать бесконечно. Хвала небесам, что случаи аварий единичны, подавляющее большинство атомных станций мира успешно работают десятилетиями, ни разу не сталкиваясь со сбоями системы.

Сегодня атомная энергетика – это одно из самых быстро развивающихся направлений в мировой науке. Попытаемся отойти от устойчивого мифа о том, что атомные станции – это опасность ядерных катастроф и узнать про достоинства и недостатки АЭС как источников электроэнергии. В чем атомные станции превосходят тепловые и гидроэлектростанции? Каковы преимущества и недостатки АЭС? Стоит ли развивать это направление добычи электричества? Обо всем этом и не только…

Вы знали, что получить электричество можно с помощью обычной картошки, лимона или комнатного цветка? Понадобятся лишь гвоздь и медная проволока. Но снабдить электроэнергией весь мир картошка и лимоны, конечно, не смогут. Поэтому с 19 века ученые начали осваивать методы получения электроэнергии с помощью генерации.

Генерация – это процесс преобразования различных видов энергии в электрическую. Процесс генерации происходит в электрических станциях. Сегодня существует множество видов генерации.

Получить электроэнергию сегодня можно следующими способами:

  1. Тепловая электроэнергетика – электроэнергия получается с помощью теплового сгорания органического топлива. Если просто – нефть и газ сгорают, выделяют тепло, тепло нагревает пар. Пар под давлением заставляет вращаться электрогенератор, а электрогенератор вырабатывает электроэнергию. Тепловые электрические станции, в которых происходит этот процесс, именуются ТЭСами.
  2. Ядерная энергетика – принцип работы АЭС (атомных станций, получающих электроэнергию с помощью ядерных установок) очень похож на работу ТЭС. Отличие лишь в том, что тепло получают не от сгорания органического топлива, а от деления атомных ядер в ядерном реакторе.
  3. Гидроэнергетика – в случае с ГЭС (гидроэлектростанциями), электрическую энергию получают от кинетической энергии течения воды. Вы когда-нибудь видели водопады? В основе такого способа получения энергии лежит сила водных водопадов, которые вращают роторы электрогенераторов, производящих электроэнергию. Конечно, водопады не природные. Они создаются искусственно, используя природное речное течение. Кстати, не так давно ученые выяснили, что морское течение намного мощнее речного, в планах строить морские гидроэлектростанции.
  4. Ветроэнергетика – в данном случае приводит в действие электрогенератор кинетическая энергия ветра. Помните мельницы? В них полностью отражен этот принцип работы.
  5. Гелиоэнергетика – в гелиоэнергетике платформой для преобразования служит тепло солнечных лучей.
  6. Водородная энергетика – электроэнергию получают путем сгорания водорода. Водород сжигают, он выделяет тепло, а дальше все происходит по уже известной нам схеме.
  7. Приливная энергетика – что используют для добычи электроэнергии в этом случае? Энергию морских приливов!
  8. Геотермальная энергетика — получение сначала тепла, а потом и электроэнергии из естественного тепла Земли. К примеру, в вулканических районах.

Недостатки альтернативных источников энергии

Атомные, гидро и тепловые электростанции являются основными источниками получения электроэнергии в современном мире. Каковы достоинства АЭС, ГЭС и ТЭС? Почему нас не греет энергия ветра или энергия морских приливов? Чем ученым не угодил водород или естественное тепло Земли? На то есть свои причины.

Энергии ветра и солнца и морских приливов принято называть альтернативными из-за их редкого использования и совсем недавнего появления. А еще из-за того, что ветер, солнце, море и тепло Земли возобновляемы, и то, что человек воспользуется солнечным теплом или морским приливом никакого вреда ни солнцу ни приливу не принесет. Но не спешите бежать и ловить волны, не все так легко и радужно.

Гелиоэнергетика имеет существенные минусы — солнце светит только днем, соответственно ночью никакой энергии от него не добьешься. Это неудобно, т.к. основной пик потребления электричества приходится на вечерние часы. В разное время года и в разных местах Земли солнце светит по-разному. Подстраиваться под него дело затратное и сложное.

Ветер и волны тоже явления своенравные, хотят – дуют и приливают, а хотят — нет. Но если они и работают, то делают это медленно и слабо. Поэтому ветроэнергетика и приливная энергетика пока не получили большого распространения.

Геотермальная энергетика – сложный процесс, т.к. строить электрические станции можно только в зонах тектонической активности, где из-под земли можно «выжать» максимум тепла. Много ли мест с вулканами вы знаете? Вот и ученые немного. Поэтому геотермальная энергетика, скорее всего, так и останется узконаправленной и не особо работоспособной.

Водородная энергетика наиболее перспективна. Водород имеет очень высокий КПД сгорания и его сжигание абсолютно экологически чисто, т.к. продукт сгорания – дистиллированная вода. Но, есть одно но. Стоит процесс производства чистого водорода невероятно больших денег. Вы хотите платить миллионы за свет и горячую воду? Никто не хочет. Ждем, надеемся и верим, что в скором времени ученые найдут способ сделать водородную энергетику более доступной.

Атомная энергетика сегодня

По разным данным, ядерная энергетика сегодня дает от 10 до 15% электроэнергии во всем мире. Атомную энергию использует 31 страна. Наибольшее количество исследований в области электроэнергетики ведутся именно по использованию ядерной энергии. Логично предположить, что преимущества АЭС явно велики, если из всех видов добычи электроэнергии развивают именно этот.

В то же время, есть страны, которые отказываются от использования ядерной энергетики, закрывают все имеющиеся атомные станции, к примеру, Италия. На территории Австралии и Океании АЭС не существовало и не существует в принципе. Австрия, Куба, Ливия, КНДР и Польша остановили разработки АЭС и временно отказались от планов по созданию атомных станций. Эти страны не обращают внимания на достоинства АЭС и отказываются от их установки в первую очередь по соображениям безопасности и больших затрат на строительство и эксплуатацию атомных станций.

Лидерами в атомной энергетике сегодня являются США, Франция, Япония и Россия. Именно они по достоинству оценили преимущества АЭС и стали внедрять атомную энергетику в свои страны. Наибольшее количество строящихся проектов АЭС сегодня принадлежат Китайской Народной Республике. Еще около 50ти стран активно работают над внедрением ядерной энергетики.

Как и все способы добычи электроэнергии имеет АЭС преимущества и недостатки. Говоря про преимущества АЭС нужно отметить экологичность производства, отказ от использования органического топлива и удобство в транспортировке необходимого горючего. Рассмотрим все подробнее.

Преимущества АЭС перед ТЭС

Преимущества и недостатки АЭС зависят от того, с каким видом получения электроэнергии мы сравниваем ядерную энергетику. Поскольку основные конкуренты атомных станций – ТЭС и ГЭС, сравним достоинства и недостатки АЭС по отношению к этим видам получения энергии.

ТЭС, то есть теплоэлектростанции бывают двух видов:

  1. Конденсационные или коротко КЭС служат только для производства электроэнергии. Кстати, другое их название пришло из советского прошлого, КЭС также называют ГРЭСами – сокращенно от «государственная районная электростанция».
    2. Теплоэлектроцентрали или ТЭЦ позволяют только производить не только электрическую, но и тепловую энергию. Взяв, к примеру, жилой дом, понятно, что КЭС только даст в квартиры электричество, а ТЭЦ еще и отопление вдобавок.

Как правило, ТЭС работают на дешевом органическом топливе – угле или угольной пыли и мазуте. Самые востребованные энергетические ресурсы сегодня – это уголь, нефть и газ. По оценкам экспертов мировых запасов угля хватит еще на 270 лет, нефти – на 50 лет, газа – на 70. Даже школьник понимает, что 50летних запасов очень мало и их надо беречь, а не ежедневно сжигать в печах.

ВАЖНО ЗНАТЬ:

АЭС решают проблему нехватки органического топлива. Преимущество АЭС – это отказ от органического топлива, тем самым, сохранение исчезающих газа, угля и нефти. Вместо них на АЭС используется уран. Мировые запасы урана оцениваются в 6 306 300 тонн. Насколько лет его хватит, никто не считает, т.к. запасов много, потребление урана достаточно небольшое, и об его исчезновении думать пока не приходится. В крайнем случае, если запасы урана вдруг унесут инопланетяне или они испарятся сами собой, в качестве ядерного топлива может применяться плутоний и торий. Преобразовать их в ядерное топливо пока дорого и сложно, но можно.

Преимущества АЭС перед ТЭС – это и сокращение количества вредных выбросов в атмосферу.

Что выделяется в атмосферу при работе КЭС и ТЭЦ и насколько это опасно:

  1. Диоксид серы или сернистый ангидрид опасный газ, губительный для растений. При попадании в организм человека в больших количествах вызывает кашель и удушье. Соединяясь с водой, диоксид серы превращается в сернистую кислоту. Именно благодаря выбросам диоксида серы возникает риск кислотных дождей, опасных для природы и человека.
    2. Оксиды азота – опасны для дыхательной системы человека и животных, раздражают дыхательные пути.
    3. Бенапирен – опасен тем, что имеет свойство скапливаться в организме человека. В результате длительного воздействия может вызывать злокачественные опухоли.

Суммарные годовые выбросы ТЭС на 1000 МВт установленной мощности – это 13 тысяч тонн в год на газовых и 165 тысяч тонн на пылеугольных тепловых станциях. ТЭС мощностью в 1000 МВт в год потребляет 8 миллионов тонн кислорода для окисления топлива, преимущества АЭС в том, что в атомной энергетике кислород не потребляется в принципе.

Вышеперечисленные выбросы для АЭС также не характерны. Преимущество АЭС — выбросы вредных веществ в атмосферу на атомных станциях ничтожно малы и по сравнению с выбросами ТЭС, безвредны.

Преимущества АЭС перед ТЭС – это низкие затраты на перевозку топлива. Уголь и газ чрезвычайно дорого доставлять на производства, в то время как необходимый для ядерных реакций уран можно поместить в одну небольшую грузовую машину.

Недостатки АЭС перед ТЭС

  1. Недостатки АЭС перед ТЭС это в первую очередь наличие радиоактивных отходов. Радиоактивные отходы на атомных станциях стараются по максимуму переработать, но утилизировать совсем их не получается. Конечные отходы на современных АЭС перерабатывают в стекло и хранят в специальных хранилищах. Удастся ли их когда-нибудь использовать – пока неизвестно.
    2. Недостатки АЭС – это и небольшой КПД относительно ТЭС. Так как процессы в ТЭС протекают при более высоких температурах, они являются более производительными. В АЭС этого добиться пока сложно, т.к. циркониевые сплавы, которые косвенно участвуют в ядерных реакциях, не могут выдерживать запредельно высоких температур.
    3. Особняком стоит общая проблема тепло и атомных электростанций. Недостаток АЭС и ТЭС – это тепловое загрязнение атмосферы. Что это значит? При получении ядерной энергии выделяется большое количество тепловой энергии, которая выбрасывается в окружающую среду. Тепловое загрязнение атмосферы – проблема сегодняшнего дня, оно влечет за собой множество проблем вроде создания тепловых островов, изменения микроклимата и, в конечном счете, глобального потепления.

Современные АЭС уже решают проблему теплового загрязнения и используют для охлаждения воды собственные искусственные бассейны или градирни (специальные охладительные башни для охлаждения больших объемов горячей воды).

Преимущества и недостатки АЭС перед ГЭС

Преимущества и недостатки АЭС перед ГЭС связаны в основном с зависимостью ГЭС от природных ресурсов. Об этом подробнее…

  1. Преимущество АЭС перед гидроэлектростанциями – это теоретическая возможность строительства новых атомных станций, в то время как большинство рек и водоемов, способных работать на благо гидроэлектростанций, уже заняты. То есть открытие новых ГЭС затруднено из-за нехватки нужных мест.
    2. Следующие преимущества АЭС перед ГЭС – это непрямая зависимость от природных ресурсов. ГЭС напрямую зависят от природного водоема, АЭС же только косвенно – от добычи урана, все остальное обеспечивают сами люди и их изобретения.

Недостатки АЭС перед водными станциями незначительны — ресурсы, которые использует АЭС для ядерной реакции, а конкретно урановое топливо, является не возобновляемым. В то время как количество воды – основного возобновляемого ресурса ГЭС, от работы гидроэлектростанции никак не изменится, а уран сам по себе восстановиться в природе не может.

АЭС: преимущества и недостатки

Мы подробно рассмотрели достоинства и недостатки АЭС перед другими способами получения электроэнергии.

«Но как же радиоактивные выбросы АЭС? Рядом с атомными станциями невозможно жить! Это опасно!» — скажете вы. «Ничего подобного» — ответит вам статистика и мировое ученое сообщество.

По статистическим сравнительным оценкам, проведенным в разных странах, отмечается, что смертность от заболеваний, которые появились от воздействия выбросов ТЭС выше, чем смертность от заболеваний, которые развились в организме человека от утечки радиоактивных веществ.

Собственно, все радиоактивные вещества прочно заперты в хранилищах и ждут часа, когда их научатся остаточно перерабатывать и использовать. В атмосферу такие вещества не выбрасываются, уровень радиации в населенных пунктах близ АЭС не больше традиционного уровня радиации в крупных городах.

Говоря про достоинства и недостатки АЭС, нельзя не вспомнить о стоимости постройки и запуска атомной станции. Ориентировочная стоимость небольшой современной ядерной станции – 28 миллиардов евро, специалисты утверждают, что стоимость ТЭС примерно такая же, здесь никто не выигрывает. Однако преимущества АЭС будут в меньших затратах на покупку и утилизацию топлива – уран хоть и дороже, но способен «работать» более года, в то время как запасы угля и газа необходимо постоянно пополнять.

Аварии на АЭС

Ранее мы не упомянули только основные недостатки АЭС, которые всем известны – это последствия возможных аварий. Аварии на АЭС классифицируются по шкале INES, которая имеет 7 уровней. Опасность облучения для населения представляют аварии 4го уровня и выше.

Только две аварии в истории оценены по максимальному 7му уровню – Чернобыльская катастрофа и авария на АЭС Фукусима 1. Одну аварию посчитали 6м уровнем, это Кыштымская авария, которая произошла в 1957 году на химкомбинате «Маяк» в Челябинской области.

Безусловно, имеющиеся у АЭС преимущества и недостатки меркнут по сравнению с возможностью ядерных катастроф, уносящих жизни множества людей. Но достоинства АЭС сегодня – это усовершенствованная система безопасности, которая практически полностью исключает возможность аварий, т.к. алгоритм работы атомных реакторов компьютеризирован и с помощью компьютеров реакторы отключаются в случае минимальных нарушений.

Имеющиеся у АЭС преимущества и недостатки учитывают при разработке новых моделей атомных станций, которые будут работать на переработанном ядерном топливе и уране, залежи которого ранее в работу не вводились.

Это значит, что основные преимущества АЭС сегодня – это перспективность их модернизации, улучшения и новых изобретений в этой области. Думается, что самые главные достоинства АЭС откроются чуть позже, надеемся, что наука не будет стоять на месте, и совсем скоро мы о них узнаем.

Думаю, что на территории стран бывшего союза, когда речь заходит об атомных электростанциях, у очень многих сразу мельком в голове проходит мысль о трагедии в Чернобыле. Это не так просто забыть и я хотел бы разобраться в принципе работы этих станций, а также выяснить их плюсы и минусы.

Принцип работы атомной электростанции

АЭС является некой ядерной установкой, перед которой ставится цель - производить энергию, а впоследствии - электричество. Вообще, началом эпохи АЭС можно считать сороковые года прошлого столетия. В СССР разрабатывались различные проекты по поводу использования атомной энергии не в военных целях, а в мирных. Одной из таких мирных целей была добыча электроэнергии. В конце 40-х начались первые работы по воплощению этой идеи в жизнь. Такие станции работают на водяном реакторе, из которого выделяется энергия и передается в разные теплоносители. В процессе всего это дела выделяется пар, который охлаждается в конденсаторе. А после через генераторы ток идет в дома жителей городов.


Все плюсы и минусы АЭС

Начну с самого основного и жирного плюса - нету никакой зависимости от большого использования топлива. К тому же, затраты на то, чтобы перевезти ядерное топливо будут крайне малы в отличие от обычного. Хочу отметить, что это очень актуально для России, учитывая, что тот же уголь у нас доставляется из Сибири, а это крайне дорого.


Теперь с экологической точки зрения: количество выбросов в атмосферу за год - примерно 13 000 тонн и, как бы ни казалась эта цифра большой, по сравнению с другими предприятиями, показатель довольно мал. Другие плюсы и недостатки:

  • используется очень много воды, что ухудшает экологию;
  • производство электроэнергии практически такое же по стоимости, как и на ТЭС;
  • большой недостаток - ужасные последствия аварий (примеров достаточно).

Еще хочу отметить, что, после того, как АЭС прекращает свою работу, её нужно обязательно ликвидировать, а это может стоить чуть ли не четверть от цены постройки. Несмотря на все недостатки, АЭС довольно распространены в мире.

Ядерная энергетика (Атомная энергетика) - это отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии.

Основу Ядерной энергитики составляют атомные электростанции (АЭС). Источником энергии на АЭС служит ядерный реактор, в котором протекает управляемая цепная реакция.

Опасность связана с проблемами утилизации отходов, авариями, приводящими к экологическим и техногенным катастрофам, а также с возможностью использовать повреждение этих объектов (наряду с другими: ГЭС, химзаводами и т.п.) обычным оружием или в результате теракта - как оружие массового поражения. «Двойное применение» предприятий ядерной энергетики, возможная утечка (как санкционированная, так и преступная) ядерного топлива из сферы производства электроэнергии и его использовании для производства ядерного оружия служит постоянным источником общественной озабоченности, политических интриг и поводов к военным акциям.

Ядерная энергетика является самым экологически чистым видом энергетики. Наиболее очевидно это при знакомстве с АЭС в сопоставлении, к примеру, с ГЭС или ТЭЦ.Главное преимущество АЭС- практическая независимость от источников топлива из-за небольшого объёма используемого топлива.На ТЭС суммарные годовые выбросы вредных веществ, в которые входят сернистый газ, оксиды азота, оксиды углерода, углеводороды, альдегиды и золовая пыль.Подобные выбросы на АЭС полностью отсутствуют.Затраты на строительство АЭС находятся примерно на таком же уровне, как и строительство ТЭС, или несколько выше.При нормальной работе АЭС выбросы радиоактивных элементов в среду крайне незначительны. В среднем они в 2-4 раза меньше, чем от ТЭС одинаковой мощности.Главный недостаток АЭС - тяжелые последствия аварий.

Авария на Чернобыльской АЭС, Чернобыльская авария - разрушение 26 апреля 1986 года четвёртого энергоблока Чернобыльской атомной электростанции, расположенной на территории Украинской ССР (ныне - Украина). Разрушение носило взрывной характер, реактор был полностью разрушен, и в окружающую среду было выброшено большое количество радиоактивных веществ.31 человек погиб в течение первых 3-х месяцев после аварии; отдалённые последствия облучения, выявленные за последующие 15 лет, стали причиной гибели от 60 до 80 человек. 134 человека перенесли лучевую болезнь той или иной степени тяжести, более 115 тыс. человек из 30-километровой зоны были эвакуированы. Для ликвидации последствий были мобилизованы значительные ресурсы, более 600 тыс. человек участвовали в ликвидации последствий аварии.

В результате аварии из сельскохозяйственного оборота было выведено около 5 млн га земель, вокруг АЭС создана 30-километровая зона отчуждения, уничтожены и захоронены (закопаны тяжёлой техникой) сотни мелких населённых пунктов.Радиоактивные вещества распространялись в виде аэрозолей, которые постепенно осаждались на поверхность земли.

РАО-радиоактивные отхода- твердые, жидкие или газообразные продукты ядерной энергетики и других отраслей, содержащие радиоактивные изотопы.Особой наиболее опасной и трудно утилизируемой фракцией являются РАО - все радиоактивные и зараженные материалы, образующиеся в процессе использования радиоактивности человеком и не находящие дальнейшего применения.К РАО относятся отработанные тепловыделяющие элементы АЭС (ТВЭЛы), конструкции АЭС при их демонтаже и ремонте, обладающие радиоактивностью части медицинских приборов, рабочая одежда сотрудников АЭС и др. РАО должны храниться или захораниваться таким образом, чтобы была исключена возможность их попадания в окружающую среду.

Захоронение РАО в горных породах.

На сегодняшний день всеобще признано (в том числе и МАГАТЭ), что наиболее эффективным и безопасным решением проблемы окончательного захоронения РАО является их захоронение в могильниках на глубине не менее 300-500 м в глубинных геологических формациях с соблюдением принципа многобарьерной защиты и обязательным переводом Жидких РАО в отвержденное состояние.Опыт проведения подземных ядерных испытаний доказал, что при определенном выборе геологических структур не происходит утечки радионуклидов из подземного пространства в окружающую среду.

Приповерхностное захоронение.

МАГАТЭ определяет этот вариант как захоронение радиоактивных отходов с инженерными барьерами или без них в:

1. Приповерхностные захоронения на уровне земли. Эти захоронения находятся на или ниже поверхности, где толщина защитного покрытия составляет примерно несколько метров. Контейнеры с отходами размещаются в построенных камерах для хранения, и когда камеры заполняются, они забутовываются (засыпаются). В конечном счете, они будут закрыты и покрыты непроницаемой перегородкой и верхним слоем почвы.

2.2. Приповерхностные захоронения в пещерах ниже уровня земли. В отличие от приповерхностного захоронения на уровне земли, где выемка грунта проводится с поверхности, неглубокие захоронения требуют подземной выемки грунта, но захоронение располагается на глубине нескольких десятков метров ниже поверхности земли и доступно через слабонаклонную горную выработку.

Прямое закачивание

Этот подход касается закачивания жидких радиоактивных отходов непосредственно в пласт горной породы глубоко под землей, который выбирается из-за своих подходящих характеристик по удержанию отходов (то есть минимизируется любое их дальнейшее движение после закачивания).

Удаление в море.

Удаление в море касается радиоактивных отходов, вывозимых на кораблях и сбрасываемых в море в упаковках, спроектированных:

Для того чтобы взорваться на глубине, в результате чего происходит непосредственный выброс и рассеивание радиоактивного материала в море, или

Для погружения на морское дно и достижения его в неповрежденном виде.

Через какое-то время физическое сдерживание контейнеров перестанет действовать, и радиоактивные вещества будут рассеиваться и разбавляться в море. Дальнейшее разбавление приведет к тому, что радиоактивные вещества будут мигрировать от места сброса под действием течений.Метод удаления в море низко активных и средне активных отходов практиковался на протяжении некоторого времени.


Похожая информация.


Плюсы и минусы Атомных электростанций «Пусть будет атом рабочим, а не солдатом».Плюсы и минусы
Атомных электростанций
«Пусть будет атом рабочим, а
не солдатом».

Устройство АЭС

Атомная электростанция (АЭС) - ядерная установка для производства энергии

Атомная электростанция (АЭС) ядерная установка для
производства энергии

Первая в мире промышленная
электростанция – г. Обнинск (СССР) 1954 г.
Мощность 5 Мвт

Ядерная энергетика - один из наиболее
перспективных путей утоления энергетического
голода человечества в условиях энергетических
проблем, связанных с использованием
ископаемого горючего топлива.

Плюсы и минусы АЭС

Какие плюсы и минусы есть у АЭС?
Чего больше?

Плюсы АЭС

1. Потребляет мало топлива:
2. Более экологически чистая, чем ТЭС
и ГЭС (которые работают на мазуте,
торфе и другом топливе.): т.к. АЭС
работает на уране и частично на газе.
3. Можно строить в любом месте.
4. Не зависит от дополнительного
источника энергии:

На выработку миллиона киловатт-часов
электроэнергии требуется несколько сот
граммов урана, вместо эшелона угля.

Вагон для перевозки ядерного топлива

Расходы на
перевозку ядерного
топлива, в отличие
от традиционного,
ничтожны. В России
это особенно важно
в европейской
части, так как
доставка угля
из Сибири слишком
дорога.
Вагон для перевозки ядерного топлива

10. Огромным преимуществом АЭС является её относительная экологическая чистота.

На ТЭС суммарные годовые выбросы вредных
веществ на 1000 МВт установленной мощности
составляют примерно от 13 000 до 165 000 тонн в год.

11. Подобные выбросы на АЭС полностью отсутствуют.

АЭС в Удомле

12.

ТЭС мощностью 1000 МВт потребляет 8
миллионов тонн кислорода в год для
окисления топлива, АЭС же не потребляют
кислорода вообще.

13. Наиболее мощные АЭС в мире

«Фукусима»
«Брус»
«Гравелин»
«Запорожская»
«Пикеринг»
«Пало Верде»
«Ленинградская»
«Трикастен»

14.

Фукусима
Гравелин
Брус
Запорожская

15.

Пикеринг
Пало Верде
Трикастен
Ленинградская

16. Минусы АЭС

1. тепловое загрязнение окружающей
среды;
2. обычная утечка радиоактивности
(радиоактивные выброс и сбросы);
3. транспортировка радиоактивных
отходов;
4. аварии ядерных реакторов;

17.

Кроме того, больший удельный (на единицу
произведенной электроэнергии) выброс
радиоактивных веществ даёт угольная
станция. В угле всегда содержатся
природные радиоактивные вещества, при
сжигании угля они практически полностью
попадают во внешнюю среду. При этом
удельная активность выбросов ТЭС в
несколько раз выше, чем для АЭС

18. Объем радиоактивных отходов очень мал, они весьма компактны, и их можно хранить в условиях, гарантирующих отсутствие утечки наружу.

19. Билибинская АЭС - единственная в зоне вечной мерзлоты атомная электростанция.

Затраты на строительство АЭС находятся
примерно на таком же уровне, как и
строительство ТЭС, или несколько выше.
Билибинская АЭС - единственная в зоне вечной
мерзлоты атомная электростанция.

20.

АЭС экономичнее
обычных тепловых
станций, а, самое
главное, при
правильной их
эксплуатации – это
чистые источники
энергии.

21. Мирный атом должен жить

Атомная энергетика, испытав тяжёлые уроки
Чернобыля и других аварий, продолжает
развиваться, максимально обеспечивая безопасность
и надёжность! Атомные станции вырабатывают
электроэнергию самым экологически чистым
способом. Если люди будут ответственно и
грамотно относиться к эксплуатации АЭС, то
будущее- за ядерной энергетикой. Люди не должны
бояться мирного атома, ведь аварии происходят по
вине человека.