Как определить производную функции. Что такое производная?Определение и смысл производной функции

Начальный уровень

Производная функции. Исчерпывающее руководство (2019)

Представим себе прямую дорогу, проходящую по холмистой местности. То есть она идет то вверх, то вниз, но вправо или влево не поворачивает. Если ось направить вдоль дороги горизонтально, а - вертикально, то линия дороги будет очень похожа на график какой-то непрерывной функции:

Ось - это некий уровень нулевой высоты, в жизни мы используем в качестве него уровень моря.

Двигаясь вперед по такой дороге, мы также движемся вверх или вниз. Также можем сказать: при изменении аргумента (продвижение вдоль оси абсцисс) изменяется значение функции (движение вдоль оси ординат). А теперь давай подумаем, как определить «крутизну» нашей дороги? Что это может быть за величина? Очень просто: на сколько изменится высота при продвижении вперед на определенное расстояние. Ведь на разных участках дороги, продвигаясь вперед (вдоль оси абсцисс) на один километр, мы поднимемся или опустимся на разное количество метров относительно уровня моря (вдоль оси ординат).

Продвижение вперед обозначим (читается «дельта икс»).

Греческую букву (дельта) в математике обычно используют как приставку, означающую «изменение». То есть - это изменение величины, - изменение; тогда что такое? Правильно, изменение величины.

Важно: выражение - это единое целое, одна переменная. Никогда нельзя отрывать «дельту» от «икса» или любой другой буквы! То есть, например, .

Итак, мы продвинулись вперед, по горизонтали, на. Если линию дороги мы сравниваем с графиком функции, то как мы обозначим подъем? Конечно, . То есть, при продвижении вперед на мы поднимаемся выше на.

Величину посчитать легко: если в начале мы находились на высоте, а после перемещения оказались на высоте, то. Если конечная точка оказалась ниже начальной, будет отрицательной - это означает, что мы не поднимаемся, а спускаемся.

Вернемся к «крутизне»: это величина, которая показывает, насколько сильно (круто) увеличивается высота при перемещении вперед на единицу расстояния:

Предположим, что на каком-то участке пути при продвижении на км дорога поднимается вверх на км. Тогда крутизна в этом месте равна. А если дорога при продвижении на м опустилась на км? Тогда крутизна равна.

А теперь рассмотрим вершину какого-нибудь холма. Если взять начало участка за полкилометра до вершины, а конец - через полкилометра после него, видно, что высота практически одинаковая.

То есть, по нашей логике выходит, что крутизна здесь почти равна нулю, что явно не соответствует действительности. Просто на расстоянии в км может очень многое поменяться. Нужно рассматривать более маленькие участки для более адекватной и точной оценки крутизны. Например, если измерять изменение высоты при перемещении на один метр, результат будет намного точнее. Но и этой точности нам может быть недостаточно - ведь если посреди дороги стоит столб, мы его можем просто проскочить. Какое расстояние тогда выберем? Сантиметр? Миллиметр? Чем меньше, тем лучше!

В реальной жизни измерять расстояние с точностью до милиметра - более чем достаточно. Но математики всегда стремятся к совершенству. Поэтому было придумано понятие бесконечно малого , то есть величина по модулю меньше любого числа, которое только можем назвать. Например, ты скажешь: одна триллионная! Куда уж меньше? А ты подели это число на - и будет еще меньше. И так далее. Если хотим написать, что величина бесконечно мала, пишем так: (читаем «икс стремится к нулю»). Очень важно понимать, что это число не равно нулю! Но очень близко к нему. Это значит, что на него можно делить.

Понятие, противоположное бесконечно малому - бесконечно большое (). Ты уже наверняка сnалкивался с ним, когда занимался неравенствами: это число по модулю больше любого числа, которое только можешь придумать. Если ты придумал самое большое из возможных чисел, просто умножь его на два, и получится еще больше. А бесконечность еще больше того, что получится. Фактически бесконечно большое и бесконечно малое обратны друг другу, то есть при, и наоборот: при.

Теперь вернемся к нашей дороге. Идеально посчитанная крутизна - это куртизна, вычисленная для бесконечно малого отрезка пути, то есть:

Замечу, что при бесконечно малом перемещении изменение высоты тоже будет бесконечно мало. Но напомню, бесконечно малое - не значит равное нулю. Если поделить друг на друга бесконечно малые числа, может получиться вполне обычное число, например, . То есть одна малая величина может быть ровно в раза больше другой.

К чему все это? Дорога, крутизна… Мы ведь не в автопробег отправляемся, а математику учим. А в математике все точно так же, только называется по-другому.

Понятие производной

Производная функции это отношение приращения функции к приращению аргумента при бесконечно малом приращение аргумента.

Приращением в математике называют изменение. То, насколько изменился аргумент () при продвижении вдоль оси, называется приращением аргумента и обозначается То, насколько изменилась функция (высота) при продвижении вперед вдоль оси на расстояние, называется приращением функции и обозначается.

Итак, производная функции - это отношение к при. Обозначаем производную той же буквой, что и функцию, только со штрихом сверху справа: или просто. Итак, запишем формулу производной, используя эти обозначения:

Как и в аналогии с доро́гой здесь при возрастании функции производная положительна, а при убывании - отрицательна.

А бывает ли производная равна нулю? Конечно. Например, если мы едем по ровной горизонтальной дороге, крутизна равна нулю. И правда, высота ведь не совсем меняется. Так и с производной: производная постоянной функции (константы) равна нулю:

так как приращение такой функции равно нулю при любом.

Давай вспомним пример с вершиной холма. Там получалось, что можно так расположить концы отрезка по разные стороны от вершины, что высота на концах оказывается одинаковой, то есть отрезок располагается параллельно оси:

Но большие отрезки - признак неточного измерения. Будем поднимать наш отрезок вверх параллельно самому себе, тогда его длина будет уменьшаться.

В конце концов, когда мы будем бесконечно близко к вершине, длина отрезка станет бесконечно малой. Но при этом он остался параллелен оси, то есть разность высот на его концах равна нулю (не стремится, а именно равна). Значит, производная

Понять это можно так: когда мы стоим на самой вершине, меленькое смещение влево или вправо изменяет нашу высоту ничтожно мало.

Есть и чисто алгебраическое объяснение: левее вершины функция возрастает, а правее - убывает. Как мы уже выяснили ранее, при возрастании функции производная положительна, а при убывании - отрицательна. Но меняется она плавно, без скачков (т.к. дорога нигде не меняет наклон резко). Поэтому между отрицательными и положительными значениями обязательно должен быть. Он и будет там, где функция ни возрастает, ни убывает - в точке вершины.

То же самое справедливо и для впадины (область, где функция слева убывает, а справа - возрастает):

Немного подробнее о приращениях.

Итак, мы меняем аргумент на величину. Меняем от какого значения? Каким он (аргумент) теперь стал? Можем выбрать любую точку, и сейчас будем от нее плясать.

Рассмотрим точку с координатой. Значение функции в ней равно. Затем делаем то самое приращение: увеличиваем координату на. Чему теперь равен аргумент? Очень легко: . А чему теперь равно значение функции? Куда аргумент, туда и функция: . А что с приращением функции? Ничего нового: это по-прежнему величина, на которую изменилась функция:

Потренируйся находить приращения:

  1. Найди приращение функции в точке при приращении аргумента, равном.
  2. То же самое для функции в точке.

Решения:

В разных точках при одном и том же приращении аргумента приращение функции будет разным. Значит, и производная в каждой точке своя (это мы обсуждали в самом начале - крутизна дороги в разных точках разная). Поэтому когда пишем производную, надо указывать, в какой точке:

Степенная функция.

Степенной называют функцию, где аргумент в какой-то степени (логично, да?).

Причем - в любой степени: .

Простейший случай - это когда показатель степени:

Найдем ее производную в точке. Вспоминаем определение производной:

Итак, аргумент меняется с до. Каково приращение функции?

Приращение - это. Но функция в любой точке равна своему аргументу. Поэтому:

Производная равна:

Производная от равна:

b) Теперь рассмотрим квадратичную функцию (): .

А теперь вспомним, что. Это значит, что значением приращения можно пренебречь, так как оно бесконечно мало, и поэтому незначительно на фоне другого слагаемого:

Итак, у нас родилось очередное правило:

c) Продолжаем логический ряд: .

Это выражение можно упростить по-разному: раскрыть первую скобку по формуле сокращенного умножения куб суммы, или же разложить все выражение на множители по формуле разности кубов. Попробуй сделать это сам любым из предложенных способов.

Итак, у меня получилось следующее:

И снова вспомним, что. Это значит, что можно пренебречь всеми слагаемыми, содержащими:

Получаем: .

d) Аналогичные правила можно получить и для больших степеней:

e) Оказывается, это правило можно обобщить для степенной функции с произвольным показателем, даже не целым:

(2)

Можно сформулировать правило словами: «степень выносится вперед как коэффициент, а потом уменьшается на ».

Докажем это правило позже (почти в самом конце). А сейчас рассмотрим несколько примеров. Найди производную функций:

  1. (двумя способами: по формуле и используя определение производной - посчитав приращение функции);
  1. . Не поверишь, но это степенная функция. Если у тебя возникли вопросы типа «Как это? А где же степень?», вспоминай тему « »!
    Да-да, корень - это тоже степень, только дробная: .
    Значит, наш квадратный корень - это всего лишь степень с показателем:
    .
    Производную ищем по недавно выученной формуле:

    Если в этом месте снова стало непонятно, повторяй тему « »!!! (про степень с отрицательным показателем)

  2. . Теперь показатель степени:

    А теперь через определение (не забыл еще?):
    ;
    .
    Теперь, как обычно, пренебрегаем слагаемым, содержащим:
    .

  3. . Комбинация предыдущих случаев: .

Тригонометрические функции.

Здесь будем использовать один факт из высшей математики:

При выражение.

Доказательство ты узнаешь на первом курсе института (а чтобы там оказаться, надо хорошо сдать ЕГЭ). Сейчас только покажу это графически:

Видим, что при функция не существует - точка на графике выколота. Но чем ближе к значению, тем ближе функция к. Это и есть то самое «стремится».

Дополнительно можешь проверить это правило с помощью калькулятора. Да-да, не стесняйся, бери калькулятор, мы ведь не на ЕГЭ еще.

Итак, пробуем: ;

Не забудь перевести калькулятор в режим «Радианы»!

и т.д. Видим, что чем меньше, тем ближе значение отношения к.

a) Рассмотрим функцию. Как обычно, найдем ее приращение:

Превратим разность синусов в произведение. Для этого используем формулу (вспоминаем тему « »): .

Теперь производная:

Сделаем замену: . Тогда при бесконечно малом также бесконечно мало: . Выражение для принимает вид:

А теперь вспоминаем, что при выражение. А также, что если бесконечно малой величиной можно пренебречь в сумме (то есть при).

Итак, получаем следующее правило: производная синуса равна косинусу :

Это базовые («табличные») производные. Вот они одним списком:

Позже мы к ним добавим еще несколько, но эти - самые важные, так как используются чаще всего.

Потренируйся:

  1. Найди производную функции в точке;
  2. Найди производную функции.

Решения:

  1. Сперва найдем производную в общем виде, а затем подставим вместо его значение:
    ;
    .
  2. Тут у нас что-то похожее на степенную функцию. Попробуем привести ее к
    нормальному виду:
    .
    Отлично, теперь можно использовать формулу:
    .
    .
  3. . Ээээээ….. Что это????

Ладно, ты прав, такие производные находить мы еще не умеем. Здесь у нас комбинация нескольких типов функций. Чтобы работать с ними, нужно выучить еще несколько правил:

Экспонента и натуральный логарифм.

Есть в математике такая функция, производная которой при любом равна значению самой функции при этом же. Называется она «экспонента», и является показательной функцией

Основание этой функции - константа - это бесконечная десятичная дробь, то есть число иррациональное (такое как). Его называют «число Эйлера», поэтому и обозначают буквой.

Итак, правило:

Запомнить очень легко.

Ну и не будем далеко ходить, сразу же рассмотрим обратную функцию. Какая функция является обратной для показательной функции? Логарифм:

В нашем случае основанием служит число:

Такой логарифм (то есть логарифм с основанием) называется «натуральным», и для него используем особое обозначение: вместо пишем.

Чему равен? Конечно же, .

Производная от натурального логарифма тоже очень простая:

Примеры:

  1. Найди производную функции.
  2. Чему равна производная функции?

Ответы: Экспонента и натуральный логарифм - функции уникально простые с точки зрения производной. Показательные и логарифмические функции с любым другим основанием будут иметь другую производную, которую мы с тобой разберем позже, после того как пройдем правила дифференцирования.

Правила дифференцирования

Правила чего? Опять новый термин, опять?!...

Дифференцирование - это процесс нахождения производной.

Только и всего. А как еще назвать этот процесс одним словом? Не производнование же... Дифференциалом математики называют то самое приращение функции при. Происходит этот термин от латинского differentia — разность. Вот.

При выводе всех этих правил будем использовать две функции, например, и. Нам понадобятся также формулы их приращений:

Всего имеется 5 правил.

Константа выносится за знак производной.

Если - какое-то постоянное число (константа), тогда.

Очевидно, это правило работает и для разности: .

Докажем. Пусть, или проще.

Примеры.

Найдите производные функций:

  1. в точке;
  2. в точке;
  3. в точке;
  4. в точке.

Решения:

  1. (производная одинакова во всех точках, так как это линейная функция, помнишь?);

Производная произведения

Здесь все аналогично: введем новую функцию и найдем ее приращение:

Производная:

Примеры:

  1. Найдите производные функций и;
  2. Найдите производную функции в точке.

Решения:

Производная показательной функции

Теперь твоих знаний достаточно, чтобы научиться находить производную любой показательной функции, а не только экспоненты (не забыл еще, что это такое?).

Итак, где - это какое-то число.

Мы уже знаем производную функции, поэтому давай попробуем привести нашу функцию к новому основанию:

Для этого воспользуемся простым правилом: . Тогда:

Ну вот, получилось. Теперь попробуй найти производную, и не забудь, что эта функция - сложная.

Получилось?

Вот, проверь себя:

Формула получилась очень похожая на производную экспоненты: как было, так и осталось, появился только множитель, который является просто числом, но не переменной.

Примеры:
Найди производные функций:

Ответы:

Это просто число, которое невозможно посчитать без калькулятора, то есть никак не записать в более простом виде. Поэтому в ответе его в таком виде и оставляем.

Производная логарифмической функции

Здесь аналогично: ты уже знаешь производную от натурального логарифма:

Поэтому, чтобы найти произвольную от логарифма с другим основанием, например, :

Нужно привести этот логарифм к основанию. А как поменять основание логарифма? Надеюсь, ты помнишь эту формулу:

Только теперь вместо будем писать:

В знаменателе получилась просто константа (постоянное число, без переменной). Производная получается очень просто:

Производные показательной и логарифмической функций почти не встречаются в ЕГЭ, но не будет лишним знать их.

Производная сложной функции.

Что такое «сложная функция»? Нет, это не логарифм, и не арктангенс. Данные функции может быть сложны для понимания (хотя, если логарифм тебе кажется сложным, прочти тему «Логарифмы» и все пройдет), но с точки зрения математики слово «сложная» не означает «трудная».

Представь себе маленький конвейер: сидят два человека и проделывают какие-то действия с какими-то предметами. Например, первый заворачивает шоколадку в обертку, а второй обвязывает ее ленточкой. Получается такой составной объект: шоколадка, обернутая и обвязанная ленточкой. Чтобы съесть шоколадку, тебе нужно проделать обратные действия в обратном порядке.

Давай создадим подобный математический конвейер: сперва будем находить косинус числа, а затем полученное число возводить в квадрат. Итак, нам дают число (шоколадка), я нахожу его косинус (обертка), а ты затем возводишь то, что у меня получилось, в квадрат (обвязываешь ленточкой). Что получилось? Функция. Это и есть пример сложной функции: когда для нахождения ее значения мы проделываем первое действие непосредственно с переменной, а потом еще второе действие с тем, что получилось в результате первого.

Мы вполне можем проделывать те же действия и в обратном порядке: сначала ты возводишь в квадрат, а я затем ищу косинус полученного числа: . Несложно догадаться, что результат будет почти всегда разный. Важная особенность сложных функций: при изменении порядка действий функция меняется.

Другими словами, сложная функция - это функция, аргументом которой является другая функция : .

Для первого примера, .

Второй пример: (то же самое). .

Действие, которое делаем последним будем называть «внешней» функцией , а действие, совершаемое первым - соответственно «внутренней» функцией (это неформальные названия, я их употребляю только для того, чтобы объяснить материал простым языком).

Попробуй определить сам, какая функция является внешней, а какая внутренней:

Ответы: Разделение внутренней и внешней функций очень похоже на замену переменных: например, в функции

  1. Первым будем выполнять какое действие? Сперва посчитаем синус, а только потом возведем в куб. Значит, внутренняя функция, а внешняя.
    А исходная функция является их композицией: .
  2. Внутренняя: ; внешняя: .
    Проверка: .
  3. Внутренняя: ; внешняя: .
    Проверка: .
  4. Внутренняя: ; внешняя: .
    Проверка: .
  5. Внутренняя: ; внешняя: .
    Проверка: .

производим замену переменных и получаем функцию.

Ну что ж, теперь будем извлекать нашу шоколадку - искать производную. Порядок действий всегда обратный: сначала ищем производную внешней функции, затем умножаем результат на производную внутренней функции. Применительно к исходному примеру это выглядит так:

Другой пример:

Итак, сформулируем, наконец, официальное правило:

Алгоритм нахождения производной сложной функции:

Вроде бы все просто, да?

Проверим на примерах:

Решения:

1) Внутренняя: ;

Внешняя: ;

2) Внутренняя: ;

(только не вздумай теперь сократить на! Из под косинуса ничего не выносится, помнишь?)

3) Внутренняя: ;

Внешняя: ;

Сразу видно, что здесь трехуровневая сложная функция: ведь - это уже сама по себе сложная функция, а из нее еще извлекаем корень, то есть выполняем третье действие (шоколадку в обертке и с ленточкой кладем в портфель). Но пугаться нет причин: все-равно «распаковывать» эту функцию будем в том же порядке, что и обычно: с конца.

То есть сперва продифференцируем корень, затем косинус, и только потом выражение в скобках. А потом все это перемножим.

В таких случаях удобно пронумеровать действия. То есть, представим, что нам известен. В каком порядке будем совершать действия, чтобы вычислить значение этого выражения? Разберем на примере:

Чем позже совершается действие, тем более «внешней» будет соответствующая функция. Последовательность действий - как и раньше:

Здесь вложенность вообще 4-уровневая. Давай определим порядок действий.

1. Подкоренное выражение. .

2. Корень. .

3. Синус. .

4. Квадрат. .

5. Собираем все в кучу:

ПРОИЗВОДНАЯ. КОРОТКО О ГЛАВНОМ

Производная функции - отношение приращения функции к приращению аргумента при бесконечно малом приращении аргумента:

Базовые производные:

Правила дифференцирования:

Константа выносится за знак производной:

Производная суммы:

Производная произведения:

Производная частного:

Производная сложной функции:

Алгоритм нахождения производной от сложной функции:

  1. Определяем «внутреннюю» функцию, находим ее производную.
  2. Определяем «внешнюю» функцию, находим ее производную.
  3. Умножаем результаты первого и второго пунктов.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье - 299 руб.
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - 499 руб.

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!


Дата: 20.11.2014

Что такое производная?

Таблица производных.

Производная - одно из главных понятий высшей математики. В этом уроке мы познакомимся с этим понятием. Именно познакомимся, без строгих математических формулировок и доказательств.

Это знакомство позволит:

Понимать суть несложных заданий с производной;

Успешно решать эти самые несложные задания;

Подготовиться к более серьёзным урокам по производной.

Сначала - приятный сюрприз.)

Строгое определение производной основано на теории пределов и штука достаточно сложная. Это огорчает. Но практическое применение производной, как правило, не требует таких обширных и глубоких знаний!

Для успешного выполнения большинства заданий в школе и ВУЗе достаточно знать всего несколько терминов - чтобы понять задание, и всего несколько правил - чтобы его решить. И всё. Это радует.

Приступим к знакомству?)

Термины и обозначения.

В элементарной математике много всяких математических операций. Сложение, вычитание умножение, возведение в степень, логарифмирование и т.д. Если к этим операциям добавить ещё одну, элементарная математика становится высшей. Эта новая операция называется дифференцирование. Определение и смысл этой операции будут рассмотрены в отдельных уроках.

Здесь же важно понять, что дифференцирование - это просто математическая операция над функцией. Берём любую функцию и, по определённым правилам, преобразовываем её. В результате получится новая функция. Вот эта новая функция и называется: производная.

Дифференцирование - действие над функцией.

Производная - результат этого действия.

Так же, как, например, сумма - результат сложения. Или частное - результат деления.

Зная термины, можно, как минимум, понимать задания.) Формулировки бывают такие: найти производную функции; взять производную; продифференцировать функцию; вычислить производную и т.п. Это всё одно и то же. Разумеется, бывают и более сложные задания, где нахождение производной (дифференцирование) будет всего лишь одним из шагов решения задания.

Обозначается производная с помощью штришка вверху справа над функцией. Вот так: y" или f"(x) или S"(t) и так далее.

Читается игрек штрих, эф штрих от икс, эс штрих от тэ, ну вы поняли...)

Штрих также может обозначать производную конкретной функции, например: (2х+3)" , (x 3 )" , (sinx)" и т.д. Часто производная обозначается с помощью дифференциалов, но такое обозначение в этом уроке мы рассматривать не будем.

Предположим, что понимать задания мы научились. Осталось всего ничего - научиться их решать.) Напомню ещё раз: нахождение производной - это преобразование функции по определённым правилам. Этих правил, на удивление, совсем немного.

Чтобы найти производную функции, надо знать всего три вещи. Три кита, на которых стоит всё дифференцирование. Вот они эти три кита:

1. Таблица производных (формулы дифференцирования).

3. Производная сложной функции.

Начнём по порядку. В этом уроке рассмотрим таблицу производных.

Таблица производных.

В мире - бесконечное множество функций. Среди этого множества есть функции, которые наиболее важны для практического применения. Эти функции сидят во всех законах природы. Из этих функций, как из кирпичиков, можно сконструировать все остальные. Этот класс функций называется элементарные функции. Именно эти функции и изучаются в школе - линейная, квадратичная, гипербола и т.п.

Дифференцирование функций "с нуля", т.е. исходя из определения производной и теории пределов - штука достаточно трудоёмкая. А математики - тоже люди, да-да!) Вот и упростили себе (и нам) жизнь. Они вычислили производные элементарных функций до нас. Получилась таблица производных, где всё уже готово.)

Вот она, эта табличка для самых популярных функций. Слева - элементарная функция, справа - её производная.

Функция
y
Производная функции y
y"
1 C (постоянная величина) C" = 0
2 x x" = 1
3 x n (n - любое число) (x n)" = nx n-1
x 2 (n = 2) (x 2)" = 2x
4 sin x (sin x)" = cosx
cos x (cos x)" = - sin x
tg x
ctg x
5 arcsin x
arccos x
arctg x
arcctg x
4 a x
e x
5 log a x
ln x (a = e )

Рекомендую обратить внимание на третью группу функций в этой таблице производных. Производная степенной функции - одна из самых употребительных формул, если только не самая употребительная! Намёк понятен?) Да, таблицу производных желательно знать наизусть. Кстати, это не так трудно, как может показаться. Попробуйте решать побольше примеров, таблица сама и запомнится!)

Найти табличное значение производной, как вы понимаете, задание не самое трудное. Поэтому очень часто в подобных заданиях встречаются дополнительные фишки. Либо в формулировке задания, либо в исходной функции, которой в таблице - вроде и нету...

Рассмотрим несколько примеров:

1. Найти производную функции y = x 3

Такой функции в таблице нет. Но есть производная степенной функции в общем виде (третья группа). В нашем случае n=3. Вот и подставляем тройку вместо n и аккуратно записываем результат:

(x 3) " = 3·x 3-1 = 3x 2

Вот и все дела.

Ответ: y" = 3x 2

2. Найти значение производной функции y = sinx в точке х = 0.

Это задание означает, что надо сначала найти производную от синуса, а затем подставить значение х = 0 в эту самую производную. Именно в таком порядке! А то, бывает, сразу подставляют ноль в исходную функцию... Нас же просят найти не значение исходной функции, а значение её производной. Производная, напомню - это уже новая функция.

По табличке находим синус и соответствующую производную:

y" = (sin x)" = cosx

Подставляем ноль в производную:

y"(0) = cos 0 = 1

Это и будет ответ.

3. Продифференцировать функцию:

Что, внушает?) Такой функции в таблице производных и близко нет.

Напомню, что продифференцировать функцию - это просто найти производную этой функции. Если забыть элементарную тригонометрию, искать производную нашей функции достаточно хлопотно. Таблица не помогает...

Но если увидеть, что наша функция - это косинус двойного угла , то всё сразу налаживается!

Да-да! Запомните, что преобразование исходной функции до дифференцирования вполне допускается! И, случается, здорово облегчает жизнь. По формуле косинуса двойного угла:

Т.е. наша хитрая функция есть не что иное, как y = cosx . А это - табличная функция. Сразу получаем:

Ответ: y" = - sin x .

Пример для продвинутых выпускников и студентов:

4. Найти производную функции:

Такой функции в таблице производных нет, разумеется. Но если вспомнить элементарную математику, действия со степенями... То вполне можно упростить эту функцию. Вот так:

А икс в степени одна десятая - это уже табличная функция! Третья группа, n=1/10. Прямо по формуле и записываем:

Вот и всё. Это будет ответ.

Надеюсь, что с первым китом дифференцирования - таблицей производных - всё ясно. Осталось разобраться с двумя оставшимися китами. В следующем уроке освоим правила дифференцирования.

При решении различных задач геометрии, механики, физики и других отраслей знания возникла необходимость с помощью одного и того же аналитического процесса из данной функции y=f(x) получать новую функцию, которую называют производной функцией (или просто производной) данной функции f(x) и обозначают символом

Тот процесс, с помощью которого из данной функции f(x) получают новую функцию f " (x) , называют дифференцированием и состоит он из следующих трех шагов: 1) даем аргументу x приращение  x и определяем соответствующее приращение функции  y = f(x+  x) -f(x) ; 2) составляем отношение

3) считая x постоянным, а  x 0, находим
, который обозначаем черезf " (x) , как бы подчеркивая тем самым, что полученная функция зависит лишь от того значения x , при котором мы переходим к пределу. Определение : Производной y " =f " (x) данной функции y=f(x) при данном x называется предел отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю, если, конечно, этот предел существует, т.е. конечен. Таким образом,
, или

Заметим, что если при некотором значении x , например при x=a , отношение
при x 0 не стремится к конечному пределу, то в этом случае говорят, что функция f(x) при x=a (или в точке x=a ) не имеет производной или не дифференцируема в точке x=a .

2. Геометрический смысл производной.

Рассмотрим график функции у = f (х), дифференцируемой в окрест­ностях точки x 0

f(x)

Рассмотрим произвольную прямую, проходящую через точку гра­фика функции - точку А(x 0 , f (х 0)) и пересекающую график в некоторой точке B(x;f(x)). Такая прямая (АВ) называется секущей. Из ∆АВС: АС = ∆x; ВС =∆у; tgβ=∆y/∆x .

Так как АС || Ox, то ALO = BAC = β (как соответственные при параллельных). Но ALO - это угол наклона секущей АВ к положи­тельному направлению оси Ох. Значит, tgβ = k - угловой коэффициент прямой АВ.

Теперь будем уменьшать ∆х, т.е. ∆х→ 0. При этом точка В будет прибли­жаться к точке А по графику, а секущая АВ будет поворачиваться. Пре­дельным положением секущей АВ при ∆х→ 0 будет прямая (a), называемая касательной к графику функции у = f (х) в точке А.

Если перейти к пределу при ∆х → 0 в равенстве tgβ =∆y/∆x, то получим
илиtg =f "(x 0), так как
-угол накло­на касательной к положительному направлению оси Ох
, по определению производной. Но tg = k - угловой коэффициент каса­тельной, значит, k = tg = f "(x 0).

Итак, геометрический смысл производной заключается в следую­щем:

Производная функции в точке x 0 равна угловому коэффициенту ка­сательной к графику функции, проведенной в точке с абсциссой x 0 .

3. Физический смысл производной.

Рассмотрим движение точки по прямой. Пусть задана координата точки в любой момент времени x(t). Известно (из курса физики), что средняя скорость за промежуток времени равна отношению расстояния, пройденного за этот промежуток времени, на время, т.е.

Vср = ∆x/∆t. Перейдем к пределу в последнем равенстве при ∆t → 0.

lim Vср (t) = (t 0) - мгновенная скорость в момент времени t 0 , ∆t → 0.

а lim = ∆x/∆t = x"(t 0) (по определению производной).

Итак, (t) =x"(t).

Физический смысл производной заключается в следующем: произ­водная функции y = f (x ) в точке x 0 - это скорость изменения функции f (х) в точке x 0

Производная применяется в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени.

(t) = x"(t) - скорость,

a(f) = "(t) - ускорение, или

Если известен закон движения материальной точки по окружности, то можно найти угловую скорость и угловое ускорение при вращатель­ном движении:

φ = φ(t) - изменение угла от времени,

ω = φ"(t) - угловая скорость,

ε = φ"(t) - угловое ускорение, или ε = φ"(t).

Если известен закон распределения массы неоднородного стержня, то можно найти линейную плотность неоднородного стержня:

m = m(х) - масса,

x  , l - длина стержня,

р = m"(х) - линейная плотность.

С помощью производной решаются задачи из теории упругости и гармонических колебаний. Так, по закону Гука

F = -kx, x – переменная координата, k- коэффициент упругости пружины. Положив ω 2 =k/m, получим дифференциальное уравнение пружинного маятника х"(t) + ω 2 x(t) = 0,

где ω = √k/√m частота колебаний (l/c), k - жесткость пружины (H/m).

Уравнение вида у" + ω 2 y = 0 называется уравнением гармонических колебаний (механических, электрических, электромагнитных). Решени­ем таких уравнений является функция

у = Asin(ωt + φ 0) или у = Acos(ωt + φ 0), где

А - амплитуда колебаний, ω - циклическая частота,

φ 0 - начальная фаза.

Определение. Пусть функция \(y = f(x) \) определена в некотором интервале, содержащем внутри себя точку \(x_0 \). Дадим аргументу приращение \(\Delta x \) такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции \(\Delta y \) (при переходе от точки \(x_0 \) к точке \(x_0 + \Delta x \)) и составим отношение \(\frac{\Delta y}{\Delta x} \). Если существует предел этого отношения при \(\Delta x \rightarrow 0 \), то указанный предел называют производной функции \(y=f(x) \) в точке \(x_0 \) и обозначают \(f"(x_0) \).

$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f"(x_0) $$

Для обозначения производной часто используют символ y". Отметим, что y" = f(x) - это новая функция, но, естественно, связанная с функцией y = f(x), определенная во всех точках x, в которых существует указанный выше предел. Эту функцию называют так: производная функции у = f(x) .

Геометрический смысл производной состоит в следующем. Если к графику функции у = f(x) в точке с абсциссой х=a можно провести касательную, непараллельную оси y, то f(a) выражает угловой коэффициент касательной:
\(k = f"(a) \)

Поскольку \(k = tg(a) \), то верно равенство \(f"(a) = tg(a) \) .

А теперь истолкуем определение производной с точки зрения приближенных равенств. Пусть функция \(y = f(x) \) имеет производную в конкретной точке \(x \):
$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f"(x) $$
Это означает, что около точки х выполняется приближенное равенство \(\frac{\Delta y}{\Delta x} \approx f"(x) \), т.е. \(\Delta y \approx f"(x) \cdot \Delta x \). Содержательный смысл полученного приближенного равенства заключается в следующем: приращение функции «почти пропорционально» приращению аргумента, причем коэффициентом пропорциональности является значение производной в заданной точке х. Например, для функции \(y = x^2 \) справедливо приближенное равенство \(\Delta y \approx 2x \cdot \Delta x \). Если внимательно проанализировать определение производной, то мы обнаружим, что в нем заложен алгоритм ее нахождения.

Сформулируем его.

Как найти производную функции у = f(x) ?

1. Зафиксировать значение \(x \), найти \(f(x) \)
2. Дать аргументу \(x \) приращение \(\Delta x \), перейти в новую точку \(x+ \Delta x \), найти \(f(x+ \Delta x) \)
3. Найти приращение функции: \(\Delta y = f(x + \Delta x) - f(x) \)
4. Составить отношение \(\frac{\Delta y}{\Delta x} \)
5. Вычислить $$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} $$
Этот предел и есть производная функции в точке x.

Если функция у = f(x) имеет производную в точке х, то ее называют дифференцируемой в точке х. Процедуру нахождения производной функции у = f(x) называют дифференцированием функции у = f(x).

Обсудим такой вопрос: как связаны между собой непрерывность и дифференцируемость функции в точке.

Пусть функция у = f(x) дифференцируема в точке х. Тогда к графику функции в точке М(х; f(x)) можно провести касательную, причем, напомним, угловой коэффициент касательной равен f"(x). Такой график не может «разрываться» в точке М, т. е. функция обязана быть непрерывной в точке х.

Это были рассуждения «на пальцах». Приведем более строгое рассуждение. Если функция у = f(x) дифференцируема в точке х, то выполняется приближенное равенство \(\Delta y \approx f"(x) \cdot \Delta x \). Если в этом равенстве \(\Delta x \) устремить к нулю, то и \(\Delta y \) будет стремиться к нулю, а это и есть условие непрерывности функции в точке.

Итак, если функция дифференцируема в точке х, то она и непрерывна в этой точке .

Обратное утверждение неверно. Например: функция у = |х| непрерывна везде, в частности в точке х = 0, но касательная к графику функции в «точке стыка» (0; 0) не существует. Если в некоторой точке к графику функции нельзя провести касательную, то в этой точке не существует производная.

Еще один пример. Функция \(y=\sqrt{x} \) непрерывна на всей числовой прямой, в том числе в точке х = 0. И касательная к графику функции существует в любой точке, в том числе в точке х = 0. Но в этой точке касательная совпадает с осью у, т. е. перпендикулярна оси абсцисс, ее уравнение имеет вид х = 0. Углового коэффициента у такой прямой нет, значит, не существует и \(f"(0) \)

Итак, мы познакомились с новым свойством функции - дифференцируемостью. А как по графику функции можно сделать вывод о ее дифференцируемости?

Ответ фактически получен выше. Если в некоторой точке к графику функции можно провести касательную, не перпендикулярную оси абсцисс, то в этой точке функция дифференцируема. Если в некоторой точке касательная к графику функции не существует или она перпендикулярна оси абсцисс, то в этой точке функция не дифференцируема.

Правила дифференцирования

Операция нахождения производной называется дифференцированием . При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций», то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу. Если C - постоянное число и f=f(x), g=g(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования :

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ (Cf)"=Cf" $$ $$ \left(\frac{f}{g} \right) " = \frac{f"g-fg"}{g^2} $$ $$ \left(\frac{C}{g} \right) " = -\frac{Cg"}{g^2} $$ Производная сложной функции:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Таблица производных некоторых функций

$$ \left(\frac{1}{x} \right) " = -\frac{1}{x^2} $$ $$ (\sqrt{x}) " = \frac{1}{2\sqrt{x}} $$ $$ \left(x^a \right) " = a x^{a-1} $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac{1}{x} $$ $$ (\log_a x)" = \frac{1}{x\ln a} $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text{tg} x)" = \frac{1}{\cos^2 x} $$ $$ (\text{ctg} x)" = -\frac{1}{\sin^2 x} $$ $$ (\arcsin x)" = \frac{1}{\sqrt{1-x^2}} $$ $$ (\arccos x)" = \frac{-1}{\sqrt{1-x^2}} $$ $$ (\text{arctg} x)" = \frac{1}{1+x^2} $$ $$ (\text{arcctg} x)" = \frac{-1}{1+x^2} $$

На этом занятии мы будем учиться применять формулы и правила дифференцирования.

Примеры. Найти производные функций.

1. y=x 7 +x 5 -x 4 +x 3 -x 2 +x-9. Применяем правило I , формулы 4, 2 и 1 . Получаем:

y’=7x 6 +5x 4 -4x 3 +3x 2 -2x+1.

2. y=3x 6 -2x+5. Решаем аналогично, используя те же формулы и формулу 3.

y’=3∙6x 5 -2=18x 5 -2.

Применяем правило I , формулы 3, 5 и 6 и 1.

Применяем правило IV , формулы 5 и 1 .

В пятом примере по правилу I производная суммы равна сумме производных, а производную 1-го слагаемого мы только что находили (пример 4 ), поэтому, будем находить производные 2-го и 3-го слагаемых, а для 1-го слагаемого можем сразу писать результат.

Дифференцируем 2-ое и 3-е слагаемые по формуле 4 . Для этого преобразуем корни третьей и четвертой степеней в знаменателях к степеням с отрицательными показателями, а затем, по 4 формуле, находим производные степеней.

Посмотрите на данный пример и полученный результат. Уловили закономерность? Хорошо. Это означает, что мы получили новую формулу и можем добавить ее в нашу таблицу производных.

Решим шестой пример и выведем еще одну формулу.

Используем правило IV и формулу 4 . Получившиеся дроби сократим.

Смотрим на данную функцию и на ее производную. Вы, конечно, поняли закономерность и готовы назвать формулу:

Учим новые формулы!

Примеры.

1. Найти приращение аргумента и приращение функции y=x 2 , если начальное значение аргумента было равно 4 , а новое -4,01 .

Решение.

Новое значение аргумента х=х 0 +Δx . Подставим данные: 4,01=4+Δх, отсюда приращение аргумента Δх =4,01-4=0,01. Приращение функции, по определению, равно разности между новым и прежним значениями функции, т.е. Δy=f (х 0 +Δх) - f (x 0). Так как у нас функция y=x 2 , то Δу =(х 0 +Δx) 2 — (х 0) 2 =(х 0) 2 +2x 0 · Δx+(Δx) 2 — (х 0) 2 =2x 0 · Δx+(Δx) 2 =

2 · 4 · 0,01+(0,01) 2 =0,08+0,0001=0,0801.

Ответ: приращение аргумента Δх =0,01; приращение функции Δу =0,0801.

Можно было приращение функции найти по-другому: Δy =y (х 0 +Δx) -y (х 0)=у(4,01) -у(4)=4,01 2 -4 2 =16,0801-16=0,0801.

2. Найти угол наклона касательной к графику функции y=f (x) в точке х 0 , если f "(х 0) = 1 .

Решение.

Значение производной в точке касания х 0 и есть значение тангенса угла наклона касательной (геометрический смысл производной). Имеем: f "(х 0) = tgα = 1 → α = 45°, так как tg45°=1.

Ответ: касательная к графику данной функции образует с положительным направлением оси Ох угол, равный 45° .

3. Вывести формулу производной функции y=x n .

Дифференцирование — это действие нахождения производной функции.

При нахождении производных применяют формулы, которые были выведены на основании определения производной, так же, как мы вывели формулу производной степени: (x n)" = nx n-1 .

Вот эти формулы.

Таблицу производных легче будет заучить, проговаривая словесные формулировки:

1. Производная постоянной величины равна нулю.

2. Икс штрих равен единице.

3. Постоянный множитель можно вынести за знак производной.

4. Производная степени равна произведению показателя этой степени на степень с тем же основанием, но показателем на единицу меньше.

5. Производная корня равна единице, деленной на два таких же корня.

6. Производная единицы, деленной на икс равна минус единице, деленной на икс в квадрате.

7. Производная синуса равна косинусу.

8. Производная косинуса равна минус синусу.

9. Производная тангенса равна единице, деленной на квадрат косинуса.

10. Производная котангенса равна минус единице, деленной на квадрат синуса.

Учим правила дифференцирования .

1. Производная алгебраической суммы равна алгебраической сумме производных слагаемых.

2. Производная произведения равна произведению производной первого множителя на второй плюс произведение первого множителя на производную второго.

3. Производная «у», деленного на «вэ» равна дроби, в числителе которой "у штрих умноженный на «вэ» минус «у, умноженный на вэ штрих», а в знаменателе — «вэ в квадрате».

4. Частный случай формулы 3.

Учим вместе!

Страница 1 из 1 1