Какие языки относятся к финно угорской группе. Финно-угорская группа языков. Счет на финно-угорских языках

Стандартные условия

Тепловые эффекты реакций зависят от условий, при которых они протекают. Поэтому, для того чтобы можно было сравнивать полученные значения тепловых эффектов реакций, энтальпии образования веществ, условились определять или приводить их к определенным, одинаковым, так называемым, стандартным условиям. Стандартными условиями принято считать состояние 1 моль чистого вещества при давлении 101 325 Па (1 атм или 760 мм рт. ст.) и температуре 25°С или 298 К. Для веществ, находящихся в растворе, за стандартную концентрацию принимают концентрацию равную один моль в литре (С = 1 моль/л). Причем предполагается, что раствор ведет себя при этой концентрации точно так же, как и при бесконечном разбавлении, т.е. является идеальным. Это же предположение относится и к веществам, которые находятся в газообразном состоянии (газ как бы является идеальным и при давлении в 1 атмосферу, и при давлении значительно более низком).

Стало быть, изменение энтальпии реакционной системы при переходе из одного состояния в другое при стандартных условиях также будет носить стандартный характер. Поэтому энтальпия образования одного моля сложного вещества из простых веществ при стандартных условиях тоже будет называться стандартной энтальпией (теплотой ) образования.

Стандартные изменения энтальпии образования обозначают ДЯ (^ р. В дальнейшем будем их называть просто стандартными энтальпиями образования веществ или энтальпиями реакции (опуская слово изменение). Например, стандартная энтальпия образования воды в жидком состоянии обозначается так:

Эта запись означает, что в стандартных условиях образование одного моль воды в жидком состоянии из простых веществ сопровождается потерей реагирующей системой 285,85 кДж. Запись термохимического уравнения этой реакции выглядит так:

Стандартные энтальпии образования для большинства известных веществ определены опытным путем или рассчитаны и сведены в справочные таблицы термодинамических свойств веществ.

Стандартные значения энтальпий образования простых веществ (например, Н 2 (г), O 2 (г), Сu (кр) и других веществ) для тех агрегатных состояний, в которых эти вещества устойчивы, принимаются равными нулю, т.е.

Стандартная энтальпия образования соединения является мерой его термодинамической устойчивости, прочности, и носит периодический характер для одного класса, группы однотипных веществ.

Иногда в выборе стандартного состояния бывают исключения, например, когда мы говорим о стандартной теплоте образования парообразной воды, мы подразумеваем, что образуется водяной пар, давление которого равно 101,3 кПа, а температура 25°С. Но при 25°С водяной пар имеет значительно более низкое равновесное давление. Значит, теплота образования воды в парообразном состоянии Дц 2 о(„) это чисто условное состояние.

Термохимические законы

Закон Гесса

Независимость теплоты химической реакции от пути процесса при р = const и Т = const была установлена в первой половине XIX в. русским ученым Г. И. Гессом. Гесс сформулировал закон, который носит сейчас его имя: тепловой эффект химической реакции не зависит от пути ее протекания, а зависит лишь от природы и физического состояния исходных веществ и продуктов реакции.

Этот закон справедлив для тех взаимодействий, которые протекают в изобарно-изотермических (или изохорно-изотермических) условиях, при том, что единственным видом совершаемой работы является работа против сил внешнего давления.

Представим себе, что имеется реакционная система, в которой вещества А и В превращаются в продукты D и Е, согласно термохимическому уравнению:

Изменение энтальпии этой реакции АH^ еакци. Продукты реакции D и Е можно получить прямо и непосредственно из исходных веществ А и В , как это схематически представлено на рис. 2.2, а по пути 1-2, минуя какие- либо промежуточные стадии. Тепловой эффект при этом способе превращения (рис. 2.2, 6) будет равен:

Получить те же самые продукты D и Е можно, осуществив процесс через образование каких-либо промежуточных веществ, например, по пути 1 -3 4-5-2 или 1-6-7-2 (рис. 2.2, а). Причем каждая стадия образования

промежуточных веществ будет характеризоваться своим тепловым эффектом или изменением энтальпии: ДН 1 , ДH 2 , ДH 3 , ДH 4 , ДH 5 , ДH 6 , и ДH 7 , соответственно, для каждого участка пути процесса (рис. 2.2, б).

Рис. 2.2. :

а - возможные пути проведения процесса; б - схемы изменения энтальпий промежуточных стадий в зависимости от пути реакции

Если же рассмотреть конечный итог энергетических изменений процесса через промежуточные стадии, то окажется, что он равен алгебраической сумме изменения энтальпий промежуточных стадий:

То есть тепловой эффект реакции не зависит от способа проведения процесса, а зависит лишь только от начального состояния исходных веществ и конечного состояния продуктов реакции (рис. 2.2, б).

На конкретной реакции, например, окисления железа кислородом, проверим выполнимость закона Гесса. Термохимическое уравнение этого процесса:

Проведем этот процесс по стадиям. Вначале окислим железо до оксида жeлеза(П) согласно уравнению:

I стадия :

с тепловым эффектом 2 263,7 кДж, а затем окислим оксид жeлеза(И) по второй стадии до оксида железа (III) согласно уравнению:

II стадия-.

в которой выделится 293,9 кДж. Складывая уравнения первой и второй стадии реакций, получим:

Суммарный тепловой эффект этих стадий также равен 821,3 кДж, как если бы проводили процесс без промежуточных стадий. То есть закон Гесса выполняется.

Термохимические уравнения можно складывать и вычитать, как обычные алгебраические уравнения.

Рассмотрим иллюстрацию закона Гесса еще на одном примере.

Известно:

Найти ДH° для следующих реакций:

На основании исходных данных удобно составить схему возможных путей образования С0 2 (рис. 2.3).

Рис. 2.3.

По закону Гесса

К такому же результату можно прийти, учитывая, что уравнение реакции (3) можно получить, вычитая из уравнения (1) уравнение (2). Аналогичная операция с тепловыми эффектами даст

Для получения уравнения (4) надо вычесть из уравнения (1) уравнение (2), умноженное на 2. Поэтому

Для практического использования важны следствия из закона Гесса. Рассмотрим два из них.

Первое следствие из закона Гесса

Это следствие связано с теплотами образования соединений. Теплотой (энтальпией) образования соединения называется количество теплоты,

выделяемой или поглощаемой при образовании 1 моля этого соединения из простых веществ, находящихся в наиболее устойчивом состоянии при данных условиях. (Простые вещества состоят из атомов одного вида, например, N 2 , Н 2 , 0 2 , С, S, Fe и др.) При этом реакция может оказаться гипотетической, т.е. не протекать реально. Например, теплота образования карбоната кальция равна тепловому эффекту реакции образования 1 моля кристаллического карбоната кальция из металлического кальция, углерода в виде графита и газообразного кислорода:

Теплоты (энтальпии) образования устойчивых простых веществ (N 2 , Н 2 , 0 2 , Fe и др.) равны нулю.

Обозначим теплоту образования вещества ДЯ оГ)р

В соответствии с первым следствием из закона Гесса по тенлотам (энтальпиям) образования можно рассчитать тепловой эффект любой реакции: тепловой эффект реакции равен разности между теплотами (энтальпиями) образования продуктов реакции и исходных веществ с учетом стехиометрических коэффициентов.

(2.11)

Здесь подстрочные значки j и і относятся соответственно к продуктам реакции и исходным веществам; v - стехиометрические коэффициенты.

Схема на рис. 2.4 иллюстрирует доказательство этого следствия. Уравнение (2.11) следует из правила сложения векторов.

Рис. 2.4.

Как сказано в п. 2.4, теплоты образования обычно относят к стандартным условиям и называют стандартной теплотой (энтальпией) образования соединения и обозначают АHоб р. Величины АНоб р наиболее распространенных соединений приведены в термодинамических справочных таблицах. С их помощью рассчитываются стандартные тепловые эффекты химических реакций АН 0:

Второе следствие из закона Гесса

Заметим, что во всех вышеприведенных примерах использовались стандартные энтальпии (теплоты) образования индивидуальных веществ. Но для некоторых соединений их определить непосредственно опытным путем не удается, если исходить только из простых веществ. В таких случаях используют закон Г. И. Гесса для расчета стандартных энтальпий (теплот) образования по известным энтальпиям (теплотам) сгорания этих веществ, поскольку в большинстве этих случаев удается осуществить реакцию полного сгорания простых и сложных веществ.

При этом под теплотой сгорания понимают тепловой эффект сгорания 1 моль сложного вещества (или 1 моль атомов простого вещества) до образования устойчивых оксидов.

Стандартные теплоты сгорания относят к 25°С (298 К) и давлению

  • 101.3 кПа. За ноль принимаются теплоты сгорания кислорода и продуктов сгорания в их устойчивом состоянии при стандартных условиях (25°С,
  • 101.3 кПа), т.е. считают энергосодержание газообразных кислорода, азота, двуокиси углерода, двуокиси серы, жидкой воды и других негорючих веществ условно равными нулю.

Практическое значение знания теплот сгорания веществ состоит в том, что по их величинам можно рассчитать тепловые эффекты химических реакций подобно тому, как это делается при использовании энтальпий (теплот) образования веществ. Ведь тепловой эффект реакции не зависит от способа ее проведения, промежуточных стадий, а определяется лишь начальным и конечным состоянием исходных веществ и продуктов реакции согласно закону Гесса. Особенно большое практическое значение теплоты сгорания имеют для определения тепловых эффектов реакций, в которых участвуют органические соединения. Например, теплоту образования метана из простых веществ

непосредственно измерить не удается. Чтобы определить теплоту образования органического вещества, его сжигают и, исходя из теплоты сгорания сложного органического вещества и теплот сгорания простых веществ, находят его теплоту образования. Связь между теплотой образования метана и теплотами сгорания продуктов реакции видна на схеме (рис. 2.5).

Согласно закону Гесса, тепловые эффекты первого и второго пути должны быть равны

Теплота сгорания простого вещества, например, графита и водорода до устойчивого оксида, т.е. до образования углекислого газа или воды, тождественна теплоте образования углекислого газа или воды:

Рис. 2.5.

Принимая это во внимание, получим:

Подставляя численные значения соответствующих теплот образования в уравнение, получим:

В некоторых термодинамических справочниках приводятся таблицы с изобарными теплотами сгорания - A//J rop многих органических веществ, которыми можно воспользоваться при расчетах. Однако, если в реакции участвуют негорючие вещества, то тепловой эффект может быть определен только через теплоты образования. Например:

при стандартных условиях тепловой эффект равен:

т.е. данная реакция экзотермическая Q= +168,07 кДж/моль.

Закон Гесса и его следствия служат основой для всех термохимических расчетов, при этом необходимо, чтобы все теплоты сгорания или образования относились к одинаковым условиям - изобарным или изохорным. В термодинамических таблицах приводятся значения АН образования или сгорания при стандартных условиях (/? = 101,3 кПа и Т = 298 К), т.е. для изобарно-изотермического процесса.

Для перехода от Qp к Qn необходимо пользоваться уравнением:

Химические превращения пищевых веществ в организме, как и любые химические реакции вне организма, подчиняются законам термохимии. Следовательно, закон Гесса дает основание использовать теплоты сгорания пищевых веществ для представления об энергии окисления их в организме. Хотя питательные вещества, вводимые в организм, проходят до своего конечного превращения сложный путь и участвуют в большом количестве реакций, суммарный энергетический эффект всех этих реакций по закону Гесса равен тепловому эффекту непосредственного сжигания введенных веществ.

Например, при сжигании одного моль глюкозы (до углекислого газа и воды) в калориметрической бомбе выделяется 2816 кДж, значит при полном окислении и в организме одного моля глюкозы выделяется количество энергии, эквивалентное 2816 кДж. Пути окисления глюкозы в калориметрической бомбе и организме различны, но энергетический эффект в обоих случаях один и тот же, так как начальное и конечное состояния участвующих в реакции веществ одинаковы.

Термохимические расчеты

Термохимические расчеты, связанные с определением тепловых эффектов реакций, теплот образования соединений, дают возможность в какой-то степени предсказать и вероятное направление процесса, и приближенно охарактеризовать прочность соединения. Все расчеты основываются на двух законах термохимии и на ее основных понятиях и определениях.

Рассмотрим несколько конкретных примеров термохимических расчетов.

Пример 2.1 . Найти стандартный тепловой эффект А// 0 реакции получения кристаллического Al2(SO4)3 при 298 К из кристаллического А1 2 0 3 и газообразного S0 3:

Стандартные энтальпии образования веществ, участвующих в данной реакции, при 298 К составляют:

Тогда по уравнению (2.12) находим

Решение. Запишем термохимическое уравнение горения метана

Из справочника термодинамических свойств веществ выпишем стандартные значения энтальпий образования (теплот образования) исходных веществ и продуктов реакций:

Поскольку в процессе горения метана образуются диоксид углерода (1 моль) и вода (2 моль) в жидком состоянии, составим термохимические уравнения образования этих веществ из простых веществ:

A так как при горении метан СН 4 (г), разлагается, превращаясь в воду в жидком состоянии и диоксид углерода, запишем термохимическое уравнение разложения метана на простые вещества:

Сложив эти три последних уравнения, получим термохимическое уравнение реакции горения метана:

Таким образом, тепловой эффект этой реакции при стандартных условиях равен Q°„ = 890,94 кДж/моль или изменение энтальпии реакции составляет ДH° кцнн = = -890,94 кДж/моль.

Если внимательно посмотреть на то, каким образом получилось это численное значение, то окажется, что из суммы теплот образования продуктов реакции вычиталась сумма теплот образования исходных веществ. Это следствие из закона Гесса, которое можно записать таким образом:

Или применительно к понятию изменения энтальпии реакции:

Применительно к нашей задаче тепловой эффект реакции можно рассчитать, не составляя уравнений образования и разложения веществ:

Или, подставляя численные данные, получим:

Аналогичный расчет можно провести, используя не теплоты образования, а энтальпии:

Пример 2.3. Вычислить тепловой эффект реакции:

Энтальпии сгорания равны:

для ацетилена (г) ДH а = -1298,3 кДж/моль; для бензола (ж) АН" = -3264,2 кДж/моль.

По уравнению (2.13) находим

Зная теплоту сгорания, легко определить теплоты образования, и наоборот. Если, например, теплота сгорания метилового спирта равна -729 кДж/моль, то, пользуясь значениями теплоты образования С0 2 и Н 2 0, можно составить следующие термохимические уравнения:

)

Умножая уравнение (в) на 2, складывая с уравнением (б) и вычитая уравнение (a), получим после преобразований реакцию образования метилового спирта

Проведя аналогичные преобразования с тепловыми эффектами реакций, получим тепловой эффект образования метилового спирта АН

Закон Гесса справедлив и для сложных биохимических процессов. Так, количество теплоты, получаемой при окислении углеводов и жиров в живом организме, где эти процессы протекают в несколько стадий, и количество теплоты, выделяемое при сжигании этих веществ в кислороде, оказались равными. Для белков это не так, так как конечным продуктом окисления белка в организме является карбамид, в кислороде же окисление белка полное.

Термохимия изучает тепловые эффекты химических реакций. Во многих случаях эти реакции протекают при постоянном объеме или постоянном давлении. Из первого закона термодинамики следует, что при этих условиях теплота является функцией состояния. При постоянном объеме теплота равна изменению внутренней энергии:

а при постоянном давлении - изменению энтальпии:

Эти равенства в применении к химическим реакциям составляют суть закона Гесса :

Тепловой эффект химической реакции, протекающей при постоянном давлении или постоянном объеме, не зависит от пути реакции, а определяется только состоянием реагентов и продуктов реакции.

Другими словами, тепловой эффект химической реакции равен изменению функции состояния.
В термохимии, в отличие от других приложений термодинамики, теплота считается положительной, если она выделяется в окружающую среду, т.е. если H < 0 или U < 0. Под тепловым эффектом химической реакции понимают значение H (которое называют просто "энтальпией реакции") или U реакции.

Если реакция протекает в растворе или в твердой фазе, где изменение объема незначительно, то

H = U + (pV ) U . (3.3)

Если же в реакции участвуют идеальные газы, то при постоянной температуре

H = U + (pV ) = U + n . RT , (3.4)

где n - изменение числа молей газов в реакции.

Для того, чтобы облегчить сравнение энтальпий различных реакций, используют понятие "стандартного состояния". Стандартное состояние - это состояние чистого вещества при давлении 1 бар (= 10 5 Па) и заданной температуре . Для газов - это гипотетическое состояние при давлении 1 бар, обладающее свойствами бесконечно разреженного газа. Энтальпию реакции между веществами, находящимися в стандартных состояниях при температуре T , обозначают (r означает "reaction"). В термохимических уравнениях указывают не только формулы веществ, но и их агрегатные состояния или кристаллические модификации.

Из закона Гесса вытекают важные следствия, которые позволяют рассчитывать энтальпии химических реакций.

Следствие 1.

равна разности стандартных энтальпий образования продуктов реакции и реагентов (с учетом стехиометрических коэффициентов):

Стандартной энтальпией (теплотой) образования вещества (f означает "formation") при заданной температуре называют энтальпию реакции образования одного моля этого вещества из элементов , находящихся в наиболее устойчивом стандартном состоянии. Согласно этому определению, энтальпия образования наиболее устойчивых простых веществ в стандартном состоянии равна 0 при любой температуре. Стандартные энтальпии образования веществ при температуре 298 К приведены в справочниках.

Понятия "энтальпия образования" используют не только для обычных веществ, но и для ионов в растворе. При этом за точку отсчета принят ион H + , для которого стандартная энтальпия образования в водном растворе полагается равной нулю:

Следствие 2. Стандартная энтальпия химической реакции

равна разности энтальпий сгорания реагентов и продуктов реакции (с учетом стехиометрических коэффициентов):

(c означает "combustion"). Стандартной энтальпией (теплотой) сгорания вещества называют энтальпию реакции полного окисления одного моля вещества. Это следствие обычно используют для расчета тепловых эффектов органических реакций.

Следствие 3. Энтальпия химической реакции равна разности энергий разрываемых и образующихся химических связей.

Энергией связи A- B называют энергию, необходимую для разрыва связи и разведения образующихся частиц на бесконечное расстояние:

AB (г) A (г) + B (г) .

Энергия связи всегда положительна.

Большинство термохимических данных в справочниках приведено при температуре 298 К. Для расчета тепловых эффектов при других температурах используют уравнение Кирхгофа :

(дифференциальная форма) (3.7)

(интегральная форма) (3.8)

где C p - разность изобарных теплоемкостей продуктов реакции и исходных веществ. Если разница T 2 - T 1 невелика, то можно принять C p = const. При большой разнице температур необходимо использовать температурную зависимость C p (T ) типа:

где коэффициенты a , b , c и т.д. для отдельных веществ берут из справочника, а знак обозначает разность между продуктами и реагентами (с учетом коэффициентов).

ПРИМЕРЫ

Пример 3-1. Стандартные энтальпии образования жидкой и газообразной воды при 298 К равны -285.8 и -241.8 кДж/моль, соответственно. Рассчитайте энтальпию испарения воды при этой температуре.

Решение . Энтальпии образования соответствуют следующим реакциям:

H 2(г) + ЅO 2(г) = H 2 O (ж) , H 1 0 = -285.8;

H 2(г) + ЅO 2(г) = H 2 O (г) , H 2 0 = -241.8.

Вторую реакцию можно провести в две стадии: сначала сжечь водород с образованием жидкой воды по первой реакции, а затем испарить воду:

H 2 O (ж) = H 2 O (г) , H 0 исп = ?

Тогда, согласно закону Гесса,

H 1 0 + H 0 исп = H 2 0 ,

откуда H 0 исп = -241.8 - (-285.8) = 44.0 кДж/моль.

Ответ. 44.0 кДж/моль.

Пример 3-2. Рассчитайте энтальпию реакции

6C (г) + 6H (г) = C 6 H 6(г)

а) по энтальпиям образования; б) по энергиям связи, в предположении, что двойные связи в молекуле C 6 H 6 фиксированы.

Решение . а) Энтальпии образования (в кДж/моль) находим в справочнике (например, P.W.Atkins, Physical Chemistry, 5th edition, pp. C9-C15): f H 0 (C 6 H 6(г)) = 82.93, f H 0 (C (г)) = 716.68, f H 0 (H (г)) = 217.97. Энтальпия реакции равна:

r H 0 = 82.93 - 6 716.68 - 6 217.97 = -5525 кДж/моль.

б) В данной реакции химические связи не разрываются, а только образуются. В приближении фиксированных двойных связей молекула C 6 H 6 содержит 6 связей C- H, 3 связи C- C и 3 связи C=C. Энергии связей (в кДж/моль) (P.W.Atkins, Physical Chemistry, 5th edition, p. C7): E (C- H) = 412, E (C- C) = 348, E (C=C) = 612. Энтальпия реакции равна:

r H 0 = -(6 412 + 3 348 + 3 612) = -5352 кДж/моль.

Разница с точным результатом -5525 кДж/моль обусловлена тем, что в молекуле бензола нет одинарных связей C- C и двойных связей C=C, а есть 6 ароматических связей C C.

Ответ. а) -5525 кДж/моль; б) -5352 кДж/моль.

Пример 3-3. Пользуясь справочными данными, рассчитайте энтальпию реакции

3Cu (тв) + 8HNO 3(aq) = 3Cu(NO 3) 2(aq) + 2NO (г) + 4H 2 O (ж)

Решение . Сокращенное ионное уравнение реакции имеет вид:

3Cu (тв) + 8H + (aq) + 2NO 3 - (aq) = 3Cu 2+ (aq) + 2NO (г) + 4H 2 O (ж) .

По закону Гесса, энтальпия реакции равна:

r H 0 = 4 f H 0 (H 2 O (ж)) + 2 f H 0 (NO (г)) + 3 f H 0 (Cu 2+ (aq)) - 2 f H 0 (NO 3 - (aq))

(энтальпии образования меди и иона H + равны, по определению, 0). Подставляя значения энтальпий образования (P.W.Atkins, Physical Chemistry, 5th edition, pp. C9-C15), находим:

r H 0 = 4 (-285.8) + 2 90.25 + 3 64.77 - 2 (-205.0) = -358.4 кДж

(в расчете на три моля меди).

Ответ. -358.4 кДж.

Пример 3-4. Рассчитайте энтальпию сгорания метана при 1000 К, если даны энтальпии образования при 298 К: f H 0 (CH 4) = -17.9 ккал/моль, f H 0 (CO 2) = -94.1 ккал/моль, f H 0 (H 2 O (г)) = -57.8 ккал/моль. Теплоемкости газов (в кал/(моль. К)) в интервале от 298 до 1000 К равны:

C p (CH 4) = 3.422 + 0.0178 . T , C p (O 2) = 6.095 + 0.0033 . T ,

C p (CO 2) = 6.396 + 0.0102 . T , C p (H 2 O (г)) = 7.188 + 0.0024 . T .

Решение . Энтальпия реакции сгорания метана

CH 4(г) + 2O 2(г) = CO 2(г) + 2H 2 O (г)

при 298 К равна:

94.1 + 2 (-57.8) - (-17.9) = -191.8 ккал/моль.

Найдем разность теплоемкостей как функцию температуры:

C p = C p (CO 2) + 2C p (H 2 O (г)) - C p (CH 4) - 2C p (O 2) =
= 5.16 - 0.0094T (кал/(моль. К)).

Энтальпию реакции при 1000 К рассчитаем по уравнению Кирхгофа:

= + = -191800 + 5.16
(1000-298) - 0.0094 (1000 2 -298 2)/2 = -192500 кал/моль.

Ответ. -192.5 ккал/моль.

ЗАДАЧИ

3-1. Сколько тепла потребуется на перевод 500 г Al (т.пл. 658 о С, H 0 пл = 92.4 кал/г), взятого при комнатной температуре, в расплавленное состояние, если C p (Al тв) = 0.183 + 1.096 10 -4 T кал/(г К)?

3-2. Стандартная энтальпия реакции CaCO 3(тв) = CaO (тв) + CO 2(г) , протекающей в открытом сосуде при температуре 1000 К, равна 169 кДж/моль. Чему равна теплота этой реакции, протекающей при той же температуре, но в закрытом сосуде?

3-3. Рассчитайте стандартную внутреннюю энергию образования жидкого бензола при 298 К, если стандартная энтальпия его образования равна 49.0 кДж/моль.

3-4. Рассчитайте энтальпию образования N 2 O 5 (г) при T = 298 К на основании следующих данных:

2NO(г) + O 2 (г) = 2NO 2 (г), H 1 0 = -114.2 кДж/моль,

4NO 2 (г) + O 2 (г) = 2N 2 O 5 (г), H 2 0 = -110.2 кДж/моль,

N 2 (г) + O 2 (г) = 2NO(г), H 3 0 = 182.6 кДж/моль.

3-5. Энтальпии сгорания -глюкозы, -фруктозы и сахарозы при 25 о С равны -2802,
-2810 и -5644 кДж/моль, соответственно. Рассчитайте теплоту гидролиза сахарозы.

3-6. Определите энтальпию образования диборана B 2 H 6 (г) при T = 298 К из следующих данных:

B 2 H 6 (г) + 3O 2 (г) = B 2 O 3 (тв) + 3H 2 O(г), H 1 0 = -2035.6 кДж/моль,

2B(тв) + 3/2 O 2 (г) = B 2 O 3 (тв), H 2 0 = -1273.5 кДж/моль,

H 2 (г) + 1/2 O 2 (г) = H 2 O(г), H 3 0 = -241.8 кДж/моль.

3-7. Рассчитайте теплоту образования сульфата цинка из простых веществ при T = 298 К на основании следующих данных.

Фактически это следствие первого начала термодинамики, но сформулирован раньше, чем первое начало. Тепловой эффект изобарного (или изохорного) процесса зависит только от начального и конечного состояний системы и не зависит от промежуточных стадий . Он доказан экспериментально, но теперь его можно вывести и из того, что тепловой эффект – это разность функций состояния (H или U). Допустим, мы проводим процесс двумя способами:

В первом случае Q = Q 21 + Q 32 + Q 43 = (U 2 –U 1) + (U 3 –U 2) + (U 4 –U 3) = U 4 –U 1 .

Во втором сразу Q = U 4 –U 1 .

Благодаря закону Гесса можно рассчитывать теплоты тех процессов, которые неудобно осуществлять на опыте.

Следствие 1 . Тепловой эффект реакции равен разности между суммой теплот образования продуктов и суммой теплот образования исходных веществ с учетом коэффициентов в уравнении реакции.

Стандартная теплота образования вещества – это тепловой эффект образования одного моля этого вещества из соответствующих простых веществ , взятых в их устойчивых (стандартных) состояниях. Образование обозначается индексом f (formation) при букве D. Пример. Получим СО тремя способами:

1) 2С(графит) + О 2 = 2СО; D 1 H;

2) 2С(алмаз) + О 2 = 2СО; D 2 H;

3) С(графит) + СО 2 = 2СО; D 3 H.

Какой из приведенных тепловых эффектов есть теплота образования СО?

Никакой. Во второй реакции участвует неустойчивая форма углерода, в третьей – получение не из простых веществ. Лучше всего подходит 1, но там получается не один моль, а два. Окончательно: D f H(СО) = D 1 H/2.

Тепловые эффекты обычно определяют для стандартных состояний веществ (см. § 7.3), и соответствующие термодинамические функции снабжают вверху ноликом, например, D f H° 298 (СО). Когда спрашиваешь студента, что такое стандартное состояние, ответ обычно начинают с температуры 298 К (25°С). Это как раз не главное. Стандартное состояние и стандартные функции можно определить при любой температуре (нижний индекс), хотя в справочниках чаще всего приводят именно для 298 К.

Теплоты образования ионов в растворах . Многие неорганические веществасильные электролиты и существуют в растворах в виде ионов. Поэтому хотелось бы знать D f H° ионов. Зная их для 20 катионов и 30 анионов, мы будем знать D f H° 600 электролитов в разбавленных растворах. Но мы не можем синтезировать раствор, содержащий ионы только одного вида (требование электронейтральности). Всегда определяется теплота образования сразу двух (или более) видов ионов, а как поделить ее между ними – неизвестно. Поэтому условно приняли стандартную теплоту образования гидратированного иона водорода D f H°(Н + водн) за ноль при всех температурах. Тогда можно определить D f H° любого аниона сильной кислоты, например: D f H°(Сl – водн) = D f H°(НСl водн). Зная их, можно определить D f H° других катионов, например:



D f H°(Са 2+ водн) = D f H°(СаСl 2водн) – 2D f H°(Сl – водн).

Замечание о терминологии и символике. В разговорной речи, а иногда и в литературе, употребляются выражения «энтальпия образования», «энтальпия растворения» и т.п. Это неточно. Энтальпия H – это функция состояния , а образование, растворение и т.п. – это процессы , т.е. изменения состояний , что обозначается буквой D. Поэтому индекс, обозначающий тип процесса (например, f), ставится не к букве H, а к букве D. Вместо «энтальпия образования» следует говорить «изменение энтальпии при образовании» или, короче, «теплота образования». То же относится к другим процессам и другим функциям, рассматриваемым далее.

12.4. Ещё три следствия из закона Гесса

2. Тепловой эффект процесса равен разности между суммами теплот сгорания исходных веществ и продуктов с учетом коэффициентов в уравнении реакции. (при условии, что продукты сгорания одни и те же).

3. Тепловой эффект процесса равен разности между суммами теплот растворения исходных веществ и продуктов с учетом коэффициентов в уравнении реакции. (при условии, что при растворении они дают одни и те же продукты, например, ионы).

4. Тепловой эффект процесса равен разности между суммами теплот атомизации исходных веществ и продуктов с учетом коэффициентов в уравнении реакции..

Почему исходные вещества и продукты переставлены по сравнению с первым следствием? Когда записываем уравнение образования вещества, оно в правой части, а в уравнениях сгорания, растворения, атомизации – в левой.



Второе следствие особенно важно в органической химии. Большинство органических реакций трудно провести до конца и строго по одному уравнению, без побочных продуктов. Зато все органические вещества горят и дают при этом одни и те же продукты.

Пример: определить и сравнить теплоты образования бутана и изобутана.

Реакция 4С(графит) + 5Н 2 = н-С 4 Н 10 (или изо-С 4 Н 10) на опыте неосуществима. Как бы мы ни нагревали графит с водородом, в лучшем случае получится метан с примесью других углеводородов, но чистый н-бутан (или изобутан) так не получится. Значит, нужно получить его каким-то другим способом, сжечь и измерить теплоту сгорания. Аналогично измерить теплоты сгорания графита, водорода и далее алгебраически скомбинировать уравнения и тепловые эффекты:

С + О 2 = СО 2 ; D 1 H Н 2 + 0,5 О 2 = Н 2 О; D 2 H С 4 Н 10 + 6,5О 2 = 4СО 2 + 5Н 2 О; D 3 H –1
4С + 5Н 2 = С 4 Н 10 ; DH = 4D 1 H + 5D 2 H – D 3 H

Это и есть сумма теплот сгорания исходных веществ минус сумма теплот сгорания продуктов.

Следствие 3 особенно важно в неорганической химии. Большинство солей, оксидов, оснований, все металлы – вещества немолекулярные и сохраняют свою индивидуальность лишь в твердом состоянии, а при растворении в воде, в кислоте или в солевом расплаве превращаются в набор одних и тех же ионов. Теплоты твердофазных реакций измерить трудно, а теплоты растворения – легче.

Пример: определить тепловой эффект реакции

CaO(тв.) + Fe 2 O 3 (тв.) = CaFe 2 O 4 (тв.); DH = ?

Эту реакцию можно осуществить практически полно. Но нужно длительное нагревание при высоких температурах, и DH реакции незаметно на фоне огромных потоков тепла в печи. Поэтому синтезируем продукт, растворяем его, например, в соляной кислоте (или в подходящем солевом расплаве), растворяем в тех же условиях исходные оксиды и измеряем теплоты растворения.

СаО + 2HCl(водн.) = СаCl 2 (водн.) + H 2 O; D 1 H Fe 2 O 3 + 6HCl(водн.) = 2FeCl 3 (водн.) + 3H 2 O; D 2 H
CaFe 2 O 4 + 8HCl(водн.) = СаCl 2 (водн.) + 2FeCl 3 (водн.) + 4H 2 O; D 3 H –1

CaO + Fe 2 O 3 = CaFe 2 O 4 ; DH = D 1 H + D 2 H – D 3 H

Следствие 4 позволяет, зная теплоты образования сложных веществ, вычислять их теплоты атомизации, поскольку теплоты атомизации простых веществ уже измерены.

Задание 81.
Вычислите количество теплоты, которое выделится при восстановлении Fe 2 O 3 металлическим алюминием, если было получено 335,1 г железа. Ответ: 2543,1 кДж.
Решение:
Уравнение реакции:

= (Al 2 O 3) - (Fe 2 O 3) = -1669,8 -(-822,1) = -847,7 кДж

Вычисление количества теплоты, которое выделяется при получении 335,1 г железа, про-изводим из пропорции:

(2 . 55,85) : -847,7 = 335,1 : х; х = (0847,7 . 335,1)/ (2 . 55,85) = 2543,1 кДж,

где 55,85 атомная масс железа.

Ответ: 2543,1 кДж.

Тепловой эффект реакции

Задание 82.
Газообразный этиловый спирт С2Н5ОН можно получить при взаимодействии этилена С 2 Н 4 (г) и водяных паров. Напишите термохимическое уравнение этой реакции, предварительно вычислив ее тепловой эффект. Ответ: -45,76 кДж.
Решение:
Уравнение реакции имеет вид:

С 2 Н 4 (г) + Н 2 О (г) = С2Н 5 ОН (г) ; = ?

Значения стандартных теплот образования веществ приведены в специальных таблицах. Учитывая, что теплоты образования простых веществ условно приняты равными нулю. Рассчитаем тепловой эффект реакции, используя следствие из закона Гесса, получим:

= (С 2 Н 5 ОН) – [ (С 2 Н 4) + (Н 2 О)] =
= -235,1 -[(52,28) + (-241,83)] = - 45,76 кДж

Уравнения реакций, в которых около символов химических соединений указываются их агрегатные состояния или кристаллическая модификация, а также числовое значение тепловых эффектов, называют термохимическими. В термохимических уравнениях, если это специально не оговорено, указываются значения тепловых эффектов при постоянном давлении Q p равные изменению энтальпии системы . Значение приводят обычно в правой части уравнения, отделяя его запятой или точкой c запятой. Приняты следующие сокращенные обозначения агрегатного состояния вещества: г - газообразное, ж - жидкое, к

Если в результате реакции выделяется теплота, то < О. Учитывая сказанное, составляем термохимическое уравнение данной в примере реакции:

С 2 Н 4 (г) + Н 2 О (г) = С 2 Н 5 ОН (г) ; = - 45,76 кДж.

Ответ: - 45,76 кДж.

Задание 83.
Вычислите тепловой эффект реакции восстановления оксида железа (II) водородом, исходя из следующих термохимических уравнений:

а) ЕеО (к) + СО (г) = Fe (к) + СO 2 (г); = -13,18 кДж;
б) СO (г) + 1/2O 2 (г) = СO 2 (г) ; = -283,0 кДж;
в) Н 2 (г) + 1/2O 2 (г) = Н 2 O (г) ; = -241,83 кДж.
Ответ: +27,99 кДж.

Решение:
Уравнение реакции восстановления оксида железа (II) водородом имеет вид:

ЕеО (к) + Н 2 (г) = Fe (к) + Н 2 О (г) ; = ?

= (Н2О) – [ (FeO)

Теплота образования воды определяется уравнением

Н 2 (г) + 1/2O 2 (г) = Н 2 O (г) ; = -241,83 кДж,

а теплоту образования оксида железа (II) можно вычислить, если из уравнения (б) вычесть уравнение (а).

=(в) - (б) - (а) = -241,83 – [-283,o – (-13,18)] = +27,99 кДж.

Ответ: +27,99 кДж.

Задание 84.
При взаимодействии газообразных сероводорода и диоксида углерода образуются пары воды и сероуглерод СS 2 (г) . Напишите термохимическое уравнение этой реакции, предварительно вычислите ее тепловой эффект. Ответ: +65,43 кДж.
Решение:
г - газообразное, ж - жидкое, к -- кристаллическое. Эти символы опускаются, если агрегатное состояние веществ очевидно, например, О 2 , Н 2 и др.
Уравнение реакции имеет вид:

2H 2 S (г) + CO 2 (г) = 2Н 2 О (г) + СS 2 (г); = ?

Значения стандартных теплот образования веществ приведены в специальных таблицах. Учитывая, что теплоты образования простых веществ условно приняты равными нулю. Тепловой эффект реакции можно вычислить, используя следствии е из закона Гесса:

= (Н 2 О) +(СS 2) – [(Н 2 S) + (СO 2)];
= 2(-241,83) + 115,28 – = +65,43 кДж.

2H 2 S (г) + CO 2 (г) = 2Н 2 О (г) + СS 2 (г) ; = +65,43 кДж.

Ответ: +65,43 кДж.

Tермохимическое уравнение реакции

Задание 85.
Напишите термохимическое уравнение реакции между СО (г) и водородом, в результате которой образуются СН 4 (г) и Н 2 О (г). Сколько теплоты выделится при этой реакции, если было получено 67,2 л метана в пересчете на нормальные условия? Ответ: 618,48 кДж.
Решение:
Уравнения реакций, в которых около символов химических соединений указываются их агрегатные состояния или кристаллическая модификация, а также числовое значение тепловых эффектов, называют термохимическими. В термохимических уравнениях, если это специально не оговорено, указываются значения тепловых эффектов при постоянном давлении Q p равные изменению энтальпии системы. Значение приводят обычно в правой части уравнения, отделяя его запятой или точкой c запятой. Приняты следующие сокращенные обозначения агрегатного состояния вещества: г - газообразное, ж - кое, к - кристаллическое. Эти символы опускаются, если агрегатное состояние веществ очевидно, например, О 2 , Н 2 и др.
Уравнение реакции имеет вид:

СО (г) + 3Н 2 (г) = СН 4 (г) + Н 2 О (г) ; = ?

Значения стандартных теплот образования веществ приведены в специальных таблицах. Учитывая, что теплоты образования простых веществ условно приняты равными нулю. Тепловой эффект реакции можно вычислить, используя следствии е из закона Гесса:

= (Н 2 О) + (СН 4) – (СO)];
= (-241,83) + (-74,84) – (-110,52) = -206,16 кДж.

Термохимическое уравнение будет иметь вид:

22,4 : -206,16 = 67,2 : х; х = 67,2 (-206,16)/22?4 = -618,48 кДж; Q = 618,48 кДж.

Ответ: 618,48 кДж.

Теплота образования

Задание 86.
Тепловой эффект какой реакции равен теплоте образования. Вычислите теплоту образования NO, исходя из следующих термохимических уравнений:
а) 4NH 3 (г) + 5О 2 (г) = 4NO (г) + 6Н 2 O (ж) ; = -1168,80 кДж;
б) 4NH 3 (г) + 3О 2 (г) = 2N 2 (г) + 6Н 2 O (ж); = -1530,28 кДж
Ответ: 90,37 кДж.
Решение:
Стандартная теплота образования равна теплоте реакции образования 1 моль этого вещества из простых веществ при стандартных условиях (Т = 298 К; р = 1,0325 . 105 Па). Образование NO из простых веществ можно представить так:

1/2N 2 + 1/2O 2 = NO

Дана реакция (а), в которой образуется 4 моль NO и дана реакция (б), в которой образуется 2 моль N2. В обеих реакциях участвует кислород. Следовательно, для определения стандартной теплоты образования NO составим следующий цикл Гесса, т. е. нужно вы-честь уравнение (а) из уравнения (б):

Таким образом, 1/2N 2 + 1/2O 2 = NO; = +90,37 кДж.

Ответ: 618,48 кДж.

Задание 87.
Кристаллический хлорид аммония образуется при взаимодействии газообразных аммиака и хлороводорода. Напишите термохимическое уравнение этой реакции, предварительно вычислив ее тепловой эффект. Сколько теплоты выделится, если в реакции было израсходовано 10 л аммиака в пересчете на нормальные условия? Ответ: 78,97 кДж.
Решение:
Уравнения реакций, в которых около символов химических соединений указываются их агрегатные состояния или кристаллическая модификация, а также числовое значение тепловых эффектов, называют термохимическими. В термохимических уравнениях, если это специально не оговорено, указываются значения тепловых эффектов при постоянном давлении Q p равные изменению энтальпии системы. Значение приводят обычно в правой части уравнения, отделяя его запятой или точкой c запятой. Приняты следующие кое, к -- кристаллическое. Эти символы опускаются, если агрегатное состояние веществ очевидно, например, О 2 , Н 2 и др.
Уравнение реакции имеет вид:

NH 3 (г) + НCl (г) = NH 4 Cl (к). ; = ?

Значения стандартных теплот образования веществ приведены в специальных таблицах. Учитывая, что теплоты образования простых веществ условно приняты равными нулю. Тепловой эффект реакции можно вычислить, используя следствии е из закона Гесса:

= (NH4Cl) – [(NH 3) + (HCl)];
= -315,39 – [-46,19 + (-92,31) = -176,85 кДж.

Термохимическое уравнение будет иметь вид:

Теплоту, выделившуюся при реакции 10 л аммиака по этой реакции, определим из про-порции:

22,4 : -176,85 = 10 : х; х = 10 (-176,85)/22,4 = -78,97 кДж; Q = 78,97 кДж.

Ответ: 78,97 кДж.

Под теплотой сгорания понимается отношение выделяющейся теплоты к массе ТТ, которая была при этом израсходована, или иначе, количество теплоты, выделяемое единицей массы топлива при его полном сгорании. Теплота сгорания топлива является интегральной характеристикой. Для определения теплоты сгорания можно воспользоваться методом калориметрирова- ния. Суть этого метода состоит в том, что ТТ помещается в замкнутый сосуд, осуществляется реакция, а выделившаяся при этом теплота отводится до тех пор, пока температура продуктов сгорания не станет равной исходной температуре ТТ. Замеренное количество теплоты делится на массу находящегося в калориметре топлива.

Теплота сгорания ТТ, определенная таким образом, отличается от изменения химической энергии AU X на разницу теплоемкостей исходных и конечных веществ.

Действительно, топливо перед помещением в калориметр имело запас энергии на один килограмм:

где U XT - химическая энергия ТТ; с т - теплоемкость ТТ; Т - температура, при которой начинается и заканчивается калориметрирование.

После сжигания запас энергии топлива равен U x ap 4- c np dT + Q, где U x a - некоторое количество химической энергии, отсчитываемой от прежнего уровня. Следовательно,

откуда

Значение с т - с ир = прежде всего, зависит от условий проведения кало- риметрирования (проводится оно при постоянном давлении или объеме).

Каждому химическому соединению соответствует свой уровень химической энергии, который характеризуется теплотой образования.

Под теплотой образования понимается количество теплоты, выделяемой (-ДHf) или поглощаемой (+ДHf) при образовании того или иного химического соединения из простых веществ.

Для проведения термодинамического расчета состава и параметров рабочего процесса продуктов сгорания используются относительные значения энтальпии (разность значений энтальпии веществ в различных состояниях) с некоторым условным началом отсчета. Это условное начало отсчета может быть произвольным, но одинаковым для всех участвующих в процессе веществ - стандартное состояние. Для Н 2 , 0 2 , N 2 , F 2 , С1 2 за начало отсчета принимается энтальпия газообразного молекулярного состояния, т. е. теплота образования указанных веществ равна нулю. Эти газообразные молекулярные соединения устойчивы при Т 0 = 293,15 К ир = 0,1 МПа. За стандартное состояние вещества принимают твердый p-графит (в США принят твердый углерод в виде алмаза). Для С принимается аллотропическая форма p-графита, для металлов, таких как Al, Mg, Li, Be и другие, - кристаллические формы.

Теплота образования считается положительной, когда образование вещества из простых осуществляется с поглощением тепла (эндотермические реакции), и отрицательней, когда образование вещества протекает с выделением теплоты (экзотермические реакции). Для примера в таблице 5.1 приведены значения стандартной теплоты образования некоторых веществ.

Если в результате горения вещество образуется из простых веществ, находящихся в стандартном состоянии, теплота образования продуктов сгорания равна по абсолютной величине и противоположна по знаку теплоте сгорания.

Так,в реакции

теплота образования Н 2 0 будет отрицательной, а теплота сгорания топлива 2Н 2 + 0 2 - положительной.

Тогда

где ЛЯ/Го - теплота образования веществ, взятых в стандартном состоянии. В обозначении теплоты образования Д указывает на изменение энергетического уровня по отношению к стандартному состоянию. Индекс «°» вверху указывает на стандартность, а индекс «0» внизу, выраженный числом, дает абсолютную температуру исходных компонентов в стандартном состоянии. Энтальпии элементов в стандартном состоянии при температуре Т 0 принимаются за начало отсчета для энтальпии компонентов топлив и продуктов сгорания.

Под стандартной теплотой образования понимается теплота образования вещества из простых веществ (элементов) в стандартном состоянии при стандартных условиях:

Таблица 5.1

Значения стандартной теплоты образования некоторых веществ

Стандартная теплота образования определяется опытным путем. В качестве температуры Т 0 чаще всего используют Т 0 = 298,15 К, а также Т 0 = 293,15 К, Т 0 = О К. При этом теплоты образования самих элементов в стандартном - устойчивом - и наиболее распространенном природном состояниях принимают равными нулю. Выражение для расчета начального значения мольной энтальпии можно записать в виде

где (Н° т -Нт 0) - изменение энтальпии в результате протекания химических реакций.

При принятии за стандартную температуру Т 0 = О К теплота образования АН}т 0 превращается в чистую меру химической энергии.

Связь мольной энтальпии топлива с теплотой образования основана на законе Гесса, являющимся частным случаем закона сохранения энергии. Закон Гесса утверждает, что конечное значение теплоты образования при химическом превращении не зависит от того, какая последовательность реакции имела место, а определяется только параметрами состояния исходных характеристик и конечных продуктов реакции. В соответствии с этим законом теплота образования (или изменение энтальпии АН) процесса, связанного с химическими превращениями или изменениями состояния, может быть вычислена по соотношению

где v, - число молей вещества; АН} т - теплота образования вещества при температуре Т, равная изменению энтальпии при его образовании из элементов, взятых при этой температуре в стандартных состояниях.

Пример. Определить теплоту образования диэтил циклогексана, если известно, что при его сгорании в атмосфере кислорода выделяется 6320 кДж/моль:

Поскольку реакция горения диэтилциклогексана экзотермическая, то теплота образования реакции составляет:

Теплота образования кислорода при указанных условиях (Т = 293,15 К; р = 0,1 МПа) принята равной нулю (стандартные условия).

В расчетах теплоты образования и энтальпии следует обращать внимание на справочные данные по тепловым эффектам химических реакций, так как наряду с общепринятыми значениями тепловых эффектов встречаются значения тепловых эффектов при образовании воды в виде пара. В этом случае значение теплоты образования воды должно быть уменьшено на 44,2 кДж/моль, что соответствует теплоте парообразования.

Теплота образования при полном сгорании топлива, когда продуктами реакции являются полные окислы элементов (Н 2 0, С0 2 , А1 2 0 3 идр.), является теплотой сгорания топлива.

Существуют различные экспериментальные методы определения теплот образования, например метод калориметрирования или спектральный метод. Если теплота образования определяется калориметрическим методом, то принимают стандартную температуру Т 0 = 298 К или Т 0 = 293 К. Спектральный метод обладает большей точностью и является более простым. Суть этого метода состоит в том, что для отвода частей диссоциирующей молекулы на бесконечное расстояние друг от друга необходимо использовать энергию (теплоту образования). В связи с тем, что при таком разделении атомов энергия квантуется, изменению расстояния между ядрами при достаточно высокой температуре и переходу энергии с одного уровня на другой соответствует своя линия в спектре излучения. При этом полосы по мере увеличения расстояния между атомами приближаются друг к другу и стремятся к определенному пределу. Положение точки слияния полос дает энергетическую характеристику диссоциирующего вещества, т. е. позволяет определить теплоту образования вещества в стандартном состоянии. Для экспериментального определения теплоты сгорания сжигание топлива производят в среде с избытком окислителя. Различают теплоты сгорания топлива при выделении воды в виде жидкости или пара. Теплота сгорания при образовании воды в виде жидкости соответствует случаю, когда учитывается теплота, выделяющаяся при конденсации содержащихся в продуктах сгорания паров воды.

В ракетных двигателях горение топлива происходит, как правило, при недостатке окислителя. Тепловой эффект реакции горения в этих условиях без добавления кислорода из окружающей среды называют калорийностью. Различают высшую и низшую калорийность топлива при выделении воды в виде жидкости и в виде пара.

Поскольку определение теплоты сгорания топлива проводится обычно калориметрическим способом в бомбе Крекера (бомбе постоянного объема), экспериментальные значения как теплоты сгорания, так и калорийности соответствуют тепловыделению при образовании воды в виде жидкости. В РДТТ продукты сгорания топлива по всей проточной части обладают температурой, исключающей возможность конденсации воды, и поэтому высшая калорийность не может быть реализована. При наличии в продуктах сгорания соединений, которые при определенной температуре, имеющей место в проточной части РДТТ, могут претерпевать фазовые переходы, необходимо учитывать теплоту их конденсации. Обычно теплота фазовых переходов отражена в таблицах зависимости энтальпии от температуры. Энтальпия многокомпонентного топлива, состоящего из нескольких соединений, определяется по его массовому составу и исходным значениям полной энтальпии компонентов, содержащихся в топливе. Если топливо содержит т 1 , %, соединения с энтальпией H v т п, %, соединения с энтальпией Я п ит. д.,то общая энтальпия равна