Движение литосферных плит. «Литосферные плиты. Тектоника плит

Тектоника плит

Определение 1

Тектоническая плита – это движущаяся часть литосферы, которая перемещается на астеносфере как относительно жесткий блок.

Замечание 1

Тектоника плит – наука, изучающая структуру и динамику поверхности земли. Установлено, что верхняя динамическая зона Земли фрагментирована в плиты, движущиеся по астеносфере. Тектоника плит описывает, в каком направлении перемещаются литосферные плиты, а также особенности их взаимодействия.

Вся литосфера разделена на большие и более мелкие плиты. Тектоническая, вулканическая и сейсмическая активность проявляется по краям плит, что ведет к формированию крупных горных бассейнов. Тектонические движения способны изменять рельеф планеты. В месте их соединения формируются горы и возвышенности, в местах расхождения образуются впадины и трещины в земле.

В настоящее время движение тектонических плит продолжается.

Движение тектонических плит

Литосферные плиты перемещаются относительно друг друга в среднем со скоростью 2,5 см в год. При движении плиты между собой взаимодействуют, особенно вдоль границ, вызывая значительные деформации в земной коре.

В результате взаимодействия тектонических плит между собой образовались массивные горные хребты и связанные с ними системы разломов (например, Гималаи, Пиренеи, Альпы, Урал, Атлас, Аппалачи, Апеннины, Анды, система разломов Сан-Андреас и др.).

Трение между плитами вызывает большую часть землетрясений на планете, вулканическую активность и образование океанических ям.

В состав тектонических плит входит два типа литосферы: континентальная кора и океаническая кора.

Тектоническая плита может быть трех типов:

  • континентальная плита,
  • океаническая плита,
  • смешанная плита.

Теории движения тектонических плит

В изучении движения тектонических плит особая заслуга принадлежит А. Вегенеру, предположившему, что Африка и восточная часть Южной Америки ранее были единым континентом. Однако после произошедшего много млн. лет назад разлома, начался сдвиг частей земной коры.

Согласно гипотезе Вегенера, тектонические платформы, обладающие разной массой и имеющие жесткую структуру, размещались на пластичной астеносфере. Они пребывали в неустойчивом состоянии и все время перемещались, в результате чего сталкивались, заходили друг на друга, формировались зоны раздвижения плит и стыки. В местах столкновений формировались участки с повышенной тектонической активностью, образовывались горы, извергались вулканы и происходили землетрясения. Смещение происходило со скоростью до 18 см в год. Из глубинных слоев литосферы в разломы проникала магма.

Некоторые исследователи считают, что выходящая на поверхность магма постепенно остывала и формировала новую структуру дна. Незадействованная земная кора под действие дрейфа плит погружалась в недра и снова превращалась в магму.

Исследования Вегенера затронули процессы вулканизма, изучение вопросов растяжения поверхности дна океанов, а также вязко-жидкой внутренней структуры земли. Труды А. Вегенера стали фундаментом для развития теории тектоники литосферных плит.

Исследования Шмеллинга доказали существование конвективного движения внутри мантии и приводящего к движению литосферных плит. Ученый считал, что основная причина движения тектонических плит – тепловая конвекция в мантии планеты, при которой нижние слои земной коры нагреваются и поднимаются, а верхние – остывают и постепенно опускаются.

Основное положение в теории тектоники плит занимает понятие геодинамической обстановки, характерной структуры с определенным соотношением тектонических плит. В одинаковой геодинамической обстановке наблюдаются однотипные магматические, тектонические, геохимические и сейсмические процессы.

Теория тектоники плит не объясняет полностью связи между движениями плит и происходящими в глубине планеты процессами. Необходима теория, которая могла бы описать внутреннее строение самой земли, процессы, происходящие в ее недрах.

Положения современной тектоники плит:

  • верхняя часть земной коры включает литосферу, обладающую хрупкой структурой и астеносферу, имеющую пластичную структуру;
  • основная причина движения плит – конвекция в астеносфере;
  • современная литосфера состоит из восьми крупных тектонических плит, порядка десяти средних плит и множества мелких;
  • мелкие тектонические плиты располагаются между крупными;
  • магматическая, тектоническая и сейсмическая активность сосредоточены на границах плит;
  • движение тектонических плит подчиняется теореме вращения Эйлера.

Типы движений тектонических плит

Выделяют различные типы движений тектонических плит:

  • дивергентное движение – две плиты расходятся, и между ними образуется подводная горная цепь или пропасть в земле;
  • конвергентное движение – две плиты сходятся, и более тонкая плита перемещается под более большую плиту, вследствие чего формируются горные хребты;
  • скользящее движение – плиты перемещаются в противоположных направлениях.

В зависимости от типа движения выделяют дивергентные, конвергентные и скользящие тектонические плиты.

Конвергенция приводит к субдукции (одна плита находится над другой) или к коллизии (две плиты сминаются и образуются горные цепи).

Дивергенция ведет к спредингу (расхождение плит и формированием океанических хребтов) и рифтингу (формирование разлома континентальной коры).

Трансформный тип движения тектонических плит подразумевает их перемещение вдоль разлома.

Рисунок 1. Типы движений тектонических плит. Автор24 - интернет-биржа студенческих работ

Твердые планеты в своем развитии проходят период нагревания, основную энергию для которого дают падающие на поверхность планеты обломки космических тел (см . Гипотеза газопылевого облака). При столкновении этих объектов с планетой почти вся кинетическая энергия падающего объекта мгновенно преобразуется в тепловую, поскольку его скорость движения, составляющая несколько десятков километров в секунду, в момент удара резко падает до нуля. Всем внутренним планетам Солнечной системы — Меркурию, Венере, Земле, Марсу — этого тепла хватало если не для того, чтобы полностью или частично расплавиться, то хотя бы для того, чтобы размягчиться и сделаться пластичными и текучими. В этот период вещества с наибольшей плотностью передвигались к центру планет, образуя ядро , а наименее плотные, наоборот, поднимались на поверхность, образуя земную кору . Примерно так же расслаивается соус для салата, если его надолго оставить на столе. Этот процесс, называемый дифференциацией магмы , объясняет внутреннее строение Земли.

У самых маленьких внутренних планет, Меркурия и Марса (а также у Луны), это тепло в конце концов выходило на поверхность и рассеивалось в космосе. Затем планеты затвердевали и (как в случае с Меркурием) в последующие несколько миллиардов лет проявляли низкую геологическую активность. История Земли была совсем другой. Поскольку Земля — самая крупная из внутренних планет, в ней сохранился и самый большой запас тепла. А чем крупнее планета, тем меньше у нее отношение площади поверхности к объему и тем меньше она теряет тепла. Следовательно, Земля остывала медленнее, чем другие внутренние планеты. (То же самое можно сказать и о Венере, размер которой немного меньше Земли.)

Кроме того, с начала формирования Земли в ней происходил распад радиоактивных элементов, что увеличивало запас тепла в ее недрах. Следовательно, Землю можно рассматривать как шарообразную печь. Внутри нее непрерывно образуется тепло, переносится к поверхности и излучается в космос. Перенос тепла вызывает ответное перемещение мантии — оболочки Земли, расположенной между ядром и земной корой на глубине от нескольких десятков до 2900 км (см . Теплообмен). Горячее вещество из глубины мантии поднимается, охлаждается, а затем вновь погружается, замещаясь новым горячим веществом. Это классический пример конвективной ячейки.

Можно сказать, что порода мантии бурлит так же, как вода в чайнике: и в том, и в другом случае тепло переносится в процессе конвекции. Некоторые геологи считают, что для завершения полного конвективного цикла породам мантии требуется несколько сотен миллионов лет — по человеческим меркам очень большое время. Известно, что многие вещества с течением времени медленно деформируются, хотя на протяжении человеческой жизни они выглядят абсолютно твердыми и неподвижными. Например, в средневековых соборах старинные оконные стекла внизу толще, чем наверху, потому что в течение многих веков стекло стекало вниз под действием силы тяжести. Если за несколько столетий это происходит с твердым стеклом, то нетрудно представить себе, что то же самое может произойти с твердыми горными породами за сотни миллионов лет.

Наверху конвективных ячеек земной мантии плавают породы, составляющие твердую поверхность Земли, — так называемые тектонические плиты . Эти плиты состоят из базальта, самой распространенной излившейся магматической горной породы. Толщина этих плит примерно 10-120 км, и они перемещаются по поверхности частично расплавленной мантии. Материки, состоящие из относительно легких пород, таких как гранит, образуют самый верхний слой плит. В большинстве случаев толщина плит под материками больше, чем под океанами. Со временем процессы, происходящие внутри Земли, сдвигают плиты, вызывая их столкновение и растрескивание, вплоть до образования новых плит или исчезновения старых. Именно благодаря этому медленному, но непрерывному перемещению плит поверхность нашей планеты все время находится в динамике, постоянно изменяясь.

Важно понимать, что понятия «плита» и «материк» — не одно и то же. Например, Северо-Американская тектоническая плита простирается от середины Атлантического океана до западного побережья Северо-Американского континента. Часть плиты покрыта водой, часть — сушей. Анатолийская плита, на которой расположены Турция и Ближний Восток, полностью покрыта сушей, в то время как Тихоокеанская плита расположена полностью под Тихим океаном. То есть границы плит и береговые линии материков не обязательно совпадают. Кстати, слово «тектоника» происходит от греческого слова tekton («строитель») — тот же корень есть и в слове «архитектор» — и подразумевает процесс строительства или сборки.

Тектоника плит заметнее всего там, где плиты соприкасаются друг с другом. Принято выделять три типа границ между плитами.

Дивергентные границы

В середине Атлантического океана поднимается к поверхности раскаленная магма, образовавшаяся в глубине мантии. Она прорывается сквозь поверхность и растекается, постепенно заполняя собой трещину между раздвигающимися плитами. Из-за этого морское дно расширяется и Европа и Северная Америка расходятся в стороны со скоростью несколько сантиметров в год. (Это движение смогли измерить с помощью радиотелескопов, расположенных на двух континентах, сравнив время прихода радиосигнала от далеких квазаров.)

Если дивергентная граница расположена под океаном, в результате расхождения плит возникает срединно-океанический хребет — горная цепь, образованная за счет скопления вещества в том месте, где оно выходит на поверхность. Срединно-Атлантический хребет, простирающийся от Исландии до Фолклендов, — это самая длинная горная цепь на Земле. Если же дивергентная граница находится под материком, она буквально разрывает его. Примером такого процесса, происходящего в наши дни, служит Великая долина разломов, простирающаяся от Иордании на юг в Восточную Африку.

Конвергентные границы

Если на дивергентных границах образуется новая кора, значит где-то в другом месте кора должна разрушаться, иначе Земля увеличивалась бы в размерах. При столкновении двух плит одна из них пододвигается под другую (это явление называется субдукцией, или пододвиганием). При этом плита, оказавшаяся внизу, погружается в мантию. Что происходит на поверхности над зоной субдукции, зависит от местонахождения границ плиты: под материком, на границе материка или под океаном.

Если зона субдукции расположена под океанической корой, то в результате пододвигания образуется глубокая срединно-океаническая впадина (желоб). Примером этого может служить самое глубокое место в Мировом океане — Марианская впадина около Филиппин. Вещество нижней плиты попадает вглубь магмы и расплавляется там, а потом может опять подняться к поверхности, образуя гряду вулканов — как, например, цепь вулканов на востоке Карибского моря и на западном берегу Соединенных Штатов.

Если обе плиты на конвергентной границе находятся под материками, результат будет совсем другим. Материковая кора состоит из легких веществ, и обе плиты фактически плавают над зоной субдукции. Поскольку одна плита пододвигается под другую, два материка сталкиваются, и их границы сминаются, образуя материковый горный хребет. Так сформировались Гималаи, когда Индийская плита около 50 миллионов лет назад столкнулась с Евразийской. В результате такого же процесса сформировались и Альпы, когда Италия соединилась с Европой. А Уральские горы, старую горную цепь, можно назвать «сварочным швом», образовавшимся при объединении европейского и азиатского массивов.

Если материк покоится только на одной из плит, на нем будут образовываться складки и смятия по мере его наползания на зону субдукции. Примером этого служат Анды на Западном побережье Южной Америки. Они сформировались после того, как Южно-Американская плита наплыла на погрузившуюся под нее плиту Наска в Тихом океане.

Трансформные границы

Иногда бывает так, что две плиты не расходятся и не пододвигаются друг под друга, а просто трутся краями. Самый известный пример такой границы — разлом Сан-Андреас в Калифорнии, где движутся бок о бок Тихоокеанская и Северо-Американская плиты. В случае трансформной границы плиты сталкиваются на время, а затем расходятся, высвобождая много энергии и вызывая сильные землетрясения.

В заключение я хотел бы подчеркнуть, что, хотя тектоника плит включает в себя понятие о движении материков, это не то же самое, что гипотеза дрейфа материков, предложенная в начале ХХ века. Эта гипотеза была отвергнута (справедливо, по мнению автора) геологами из-за некоторых экспериментальных и теоретических неувязок. И тот факт, что наша современная теория включает в себя один аспект из гипотезы дрейфа материков — перемещение материков, — не означает, что ученые отвергли тектонику плит в начале прошлого века только для того, чтобы принять ее позже. Теория, которая принята сейчас, коренным образом отличается от прежней.

Кора Земли разделена разломами на литосферные плиты, представляющие собой огромные цельные блоки, достигающие верхних слоев мантии. Они являются крупными стабильными частями земной коры и находятся в непрерывном движении, скользя по поверхности Земли. Литосферные плиты состоят либо из материковой, либо из океанической коры, а в некоторых континентальный массив сочетается с океаническим. Выделяют 7 наиболее крупных литосферных плит, которые занимают 90% поверхности нашей планеты: Антарктическая, Евразийская, Африканская, Тихоокеанская, Индо-Австралийская, Южноамериканская, Североамериканская. Кроме них существуют десятки плит средних размеров и много мелких. Между средними и крупными плитами находятся пояса в виде мозаик из мелких плит коры.

Теория тектоники литосферных плит

Теория литосферных плит изучает их движение и процессы, связанные с этим движением. Данная теория гласит о том, что причиной глобальных тектонических изменений является горизонтальное перемещение блоков литосферы - плит. Тектоника литосферных плит рассматривает взаимодействие и движение блоков земной коры.

Теория Вагнера

О том, что литосферные плиты горизонтально перемещаются, впервые высказал предположение в 1920-х годах Альфред Вагнер. Он выдвинул гипотезу о «дрейфе континентов», но она в то время не была признана достоверной. Позже, в 1960-х годах, проводились исследования океанического дна, в результате которых подтвердились догадки Вагнера о горизонтальном движении плит, а также выявлено наличие процессов расширения океанов, причиной которых является формирование океанической коры (спрединг). Основные положения теории в 1967-68 годах сформулировали американские геофизики Дж. Айзекс, К. Ле Пишон, Л. Сайкс, Дж. Оливер, У. Дж. Морган. Согласно этой теории границы плит находятся в зонах тектонической, сейсмической и вулканической активности. Границы бывают дивергентными, трансформными и конвергентными.

Движение литосферных плит

Литосферные плиты приходят в движение вследствие перемещения вещества, находящегося в верхней мантии. В зонах рифтов это вещество прорывает кору, расталкивая плиты. Большая часть рифтов располагается на океаническом дне, так как там земная кора гораздо тоньше. Наиболее крупные рифты, которые существуют на суше, находятся возле озера Байкал и Великих Африканских озер. Движение литосферных плит происходит со скоростью 1-6 см за год. Когда они между собой сталкиваются, на их границах возникают горные системы при наличии материковой коры, а в случае, когда одна из плит имеет кору океанического происхождения, образуются глубоководные желоба.

Основные положения тектоники плит сводятся к нескольким пунктам

  1. В верхней каменной части Земли существуют две оболочки, которые значительно отличаются по геологическим характеристикам. Этими оболочками являются жесткая и хрупкая литосфера и находящаяся под ней подвижная астеносфера. Подошва литосферы представляет собой раскаленную изотерму температурой 1300°С.
  2. Литосфера состоит из непрерывно движущихся по поверхности астеносферы плит земной коры.

Согласно современной теории литосферных плит вся литосфера узкими и активными зонами — глубинными разломами — разделена на отдельные блоки, перемещающиеся в пластичном слое верхней мантии относительно друг друга со скоростью 2-3 см в год. Эти блоки называются литосферными плитами.

Особенность литосферных плит — их жесткость и способность при отсутствии внешних воздействий длительное время сохранять неизменными форму и строение.

Литосферные плиты подвижны. Их перемещение по поверхности астеносферы происходит под влиянием конвективных течений в мантии. Отдельные литосферные плиты могут расходиться, сближаться или скользить друг относительно друга. В первом случае между плитами возникают зоны растяжения с трещинами вдоль границ плит, во втором — зоны сжатия, сопровождаемые надвиганием одной плиты на другую (надвигание — обдукция; поддвигание — субдукция), в третьем — сдвиговые зоны — разломы, вдоль которых происходит скольжение соседних плит.

В местах схождения континентальных плит происходит их столкновение, образуются горные пояса. Так возникла, например, на границе Евразийской и Индо-Австралийской плиты горная система Гималаи (рис. 1).

Рис. 1. Столкновение континентальных литосферных плит

При взаимодействии континентальной и океанической плит, плита с океанической земной корой пододвигается под плиту с континентальной земной корой (рис. 2).

Рис. 2. Столкновение континентальной и океанической литосферных плит

В результате столкновения континентальной и океанической литосферных плит образуются глубоководные желоба и островные дуги.

Расхождение литосферных плит и образование в результате этого земной коры океанического типа показано на рис. 3.

Для осевых зон срединно-океанических хребтов характерны рифты (от англ. rift - расщелина, трещина, разлом) — крупная линейная тектоническая структура земной коры протяженностью в сотни, тысячи, шириной в десятки, а иногда и сотни километров, образовавшаяся главным образом при горизонтальном растяжении коры (рис. 4). Очень крупные рифты называются рифтовыми поясами, зонами или системами.

Так как литосферная плита представляет собой единую пластину, то каждый ее разлом — это источник сейсмической активности и вулканизма. Эти источники сосредоточены в пределах сравнительно узких зон, вдоль которых происходят взаимные перемещения и трения смежных плит. Эти зоны получили название сейсмических поясов. Рифы, срединно-океанические хребты и глубоководные желоба являются подвижными областями Земли и располагаются на границах литосферных плит. Это свидетельствует о том, что процесс формирования земной коры в этих зонах в настоящее время происходит очень интенсивно.

Рис. 3. Расхождение литосферных плит в зоне среди нно-океанического хребта

Рис. 4. Схема образования рифта

Больше всего разломов литосферных плит на дне океанов, где земная кора тоньше, однако встречаются они и на суше. Наиболее крупный разлом на суше располагается на востоке Африки. Он протянулся на 4000 км. Ширина этого разлома — 80-120 км.

В настоящее время можно выделить семь наиболее крупных плит (рис. 5). Из них самая большая по площади — Тихоокеанская, которая целиком состоит из океанической литосферы. Как правило, к крупным относят и плиту Наска, которая в несколько раз меньше по размерам, чем каждая из семи самых крупных. При этом ученые предполагают, что на самом деле плита Наска гораздо большего размера, чем мы видим ее на карте (см. рис. 5), так как значительная часть ее ушла под соседние плиты. Эта плита также состоит только из океанической литосферы.

Рис. 5. Литосферные плиты Земли

Примером плиты, которая включает как материковую, так и океаническую литосферу, может служить, например, Индо-Авст- ралийская литосферная плита. Почти целиком состоит из материковой литосферы Аравийская плита.

Теория литосферных плит имеет важное значение. Прежде всего, она может объяснить, почему в одних местах Земли расположены горы, а в других — равнины. С помощью теории литосферных плит можно объяснить и спрогнозировать катастрофические явления, происходящие на границах плит.

Рис. 6. Очертания материков действительно представляются совместимыми

Теория дрейфа материков

Теория литосферных плит берет свое начало из теории дрейфа материков. Еще в XIX в. многие географы отмечали, что при взгляде на карту можно заметить, что берега Африки и Южной Америки при сближении кажутся совместимыми (рис. 6).

Появление гипотезы движения материков связывают с именем немецкого ученого Альфреда Вегенера (1880-1930) (рис. 7), который наиболее полно разработал эту идею.

Вегенер писал: «В 1910 г. мне впервые пришла в голову мысль о перемещении материков..., когда я поразился сходством очертаний берегов по обе стороны Атлантического океана». Он предположил, что в раннем палеозое на Земле существовали два крупных материка — Лавразия и Гондвана.

Лавразия — это был северный материк, который включал территории современной Европы, Азии без Индии и Северной Америки. Южный материк — Гондвана объединял современные территории Южной Америки, Африки, Антарктиды, Австралии и Индостана.

Между Гондваной и Лавразией находилось первое морс — Тетис, как огромный залив. Остальное пространство Земли было занято океаном Панталасса.

Около 200 млн лет назад Гондвана и Лавразия были объединены в единый континент — Пангею (Пан — всеобщий, Ге — земля) (рис. 8).

Рис. 8. Существование единого материка Пангеи (белое — суша, точки — неглубокое море)

Примерно 180 млн лет назад материк Пангея снова начал разделяться на составные части, которые перемешались но поверхности нашей планеты. Разделение происходило следующим образом: сначала вновь появились Лавразия и Гондвана, потом разделилась Лавразия, а затем раскололась и Гондвана. За счет раскола и расхождения частей Пангеи образовались океаны. Молодыми океанами можно считать Атлантический и Индийский; старым — Тихий. Северный Ледовитый океан обособился при увеличении суши в Северном полушарии.

Рис. 9. Расположение и направления дрейфа континентов в меловой период 180 млн лет назад

А. Вегенер нашел много подтверждений существованию единого материка Земли. Особенно убедительным показалось ему существование в Африке и в Южной Америке остатков древних животных — листозавров. Это были пресмыкающиеся, похожие на небольших гиппопотамов, обитавшие только в пресноводных водоемах. Значит, проплыть огромные расстояния по соленой морской воде они не могли. Аналогичные доказательства он нашел и в растительном мире.

Интерес к гипотезе движения материков в 30-е годы XX в. несколько снизился, но в 60-е годы возродился вновь, когда в результате исследований рельефа и геологии океанического дна были получены данные, свидетельствующие о процессах расширения (спрединга) океанической коры и «подныривания» одних частей коры под другие (субдукции).

На прошлой неделе публику всколыхнула новость, что полуостров Крым движется в сторону России не только благодаря политической воле населения, но и согласно законам природы. Что такое литосферные плиты и на каких из них территориально расположена Россия? Что заставляет их двигаться и куда? Какие территории хотят ещё "присоединиться" к России, а какие угрожают "убежать" в США?

"А мы куда-то едем"

Да, мы все куда-то едем. Пока вы читаете эти строки, вы медленно двигаетесь: если вы в Евразии, то на восток со скоростью примерно 2-3 сантиметра в год, если в Северной Америке, то с той же скоростью на запад, а если где-то на дне Тихого океана (как вас туда занесло?), то уносит на северо-запад на 10 сантиметров в год.

Если вы откинетесь в кресле и подождёте примерно 250 миллионов лет, то окажетесь на новом суперконтиненте, который объединит всю земную сушу, - на материке Пангея Ультима, названном так в память о древнем суперконтиненте Пангея, существовавшем как раз 250 миллионов лет назад.

Поэтому известие о том, что "Крым движется", вряд ли можно назвать новостью. Во-первых, потому, что Крым вместе с Россией, Украиной, Сибирью и Евросоюзом является частью Евразийской литосферной плиты, и все они движутся вместе в одну сторону последнюю сотню миллионов лет. Однако Крым - это ещё и часть так называемого Средиземноморского подвижного пояса, он расположен на Скифской плите, а большая часть европейской части России (включая город Санкт-Петербург) - на Восточно-Европейской платформе.

И вот здесь часто возникает путаница. Дело в том, что помимо огромных участков литосферы, таких как Евразийская или Северо-Американская плиты, существуют и совершенно иные "плитки" поменьше. Если очень условно, то земная кора составлена из континентальных литосферных плит. Сами они состоят из древних и очень стабильных платформ и зон горообразования (древних и современных). А уже сами платформы делятся на плиты – более мелкие участки коры, состоящие из двух "слоёв" - фундамента и чехла, и щиты -"однослойные" обнажения.

Чехол у этих нелитосферных плит состоит из осадочных пород (например, известняка, сложенного из множества ракушек морских животных, обитавших в доисторическом океане над поверхностью Крыма) или магматических (выброшенных из вулканов и застывших масс лавы). А ф ундамент плит и щиты чаще всего состоят из очень старых горных пород, главным образом метаморфического происхождения. Так называют магматические и осадочные породы, погрузившиеся в глубины земной коры, где под воздействием высоких температур и огромного давления с ними происходят разнообразные изменения.

Иными словами, большая часть России (за исключением Чукотки и Забайкалья) располагается на Евразийской литосферной плите. Однако её территория "поделена" между Западно-Сибирской плитой, Алданским щитом, Сибирской и Восточно-Европейской платформами и Скифской плитой.

Вероятно, о движении двух последних плит и заявил директор Института прикладной астрономии (ИПА РАН), доктор физико-математических наук Александр Ипатов . А позднее, в интервью изданию Indicator, уточнил: "Мы занимаемся наблюдениями, которые позволяют определить направление движения плит земной коры. Плита, на которой расположена станция Симеиз, движется со скоростью 29 миллиметров в год на северо-восток, то есть туда, где Россия. А плита, где находится Питер, движется, можно сказать, к Ирану, к югу-юго-западу". Впрочем, и это не является таким уж открытием, потому что об этом движении уже несколько десятков лет, а само оно началось ещё в кайнозойскую эру.

Теория Вегенера была принята со скепсисом - в основном потому, что он не мог предложить удовлетворительного механизма, объясняющего движение материков. Он считал, что континенты двигаются, проламывая земную кору, словно ледоколы лёд, благодаря центробежной силе от вращения Земли и приливных сил. Его оппоненты говорили, что континенты-"ледоколы" в процессе движения меняли бы свой облик до неузнаваемости, а центробежные и приливные силы слишком слабы, чтобы служить для них "мотором". Один из критиков подсчитал, что, будь приливное воздействие таким сильным, чтобы настолько быстро двигать континенты (Вегенер оценивал их скорость в 250 сантиметров в год), оно остановило бы вращение Земли меньше чем за год .

К концу 1930-х годов теория дрейфа континента была отвергнута как антинаучная, но к середине XX века к ней пришлось вернуться: были открыты срединно-океанические хребты и оказалось, что в зоне этих хребтов непрерывно образуется новая кора, благодаря чему и "разъезжаются" континенты. Геофизики исследовали намагниченность пород вдоль срединно-океанических хребтов и обнаружили "полосы" с разнонаправленной намагниченностью.

Оказалось, что новая океаническая кора "записывает" состояние магнитного поля Земли в момент образования, и учёные получили отличную "линейку" для измерения скорости этого конвейера. Так, в 1960-е годы теория дрейфа континентов вернулась во второй раз, уже окончательно. И на этот раз учёные смогли понять, что же двигает континенты.

"Льдины" в кипящем океане

"Представьте себе океан, где плавают льдины, то есть в нём есть вода, есть лёд и, допустим, в некоторые льдины вморожены ещё деревянные плоты. Лёд - это литосферные плиты, плоты - это континенты, а плавают они в веществе мантии", -объясняет член-корреспондент РАН Валерий Трубицын, главный научный сотрудник Института физики Земли имени О.Ю. Шмидта.

Он ещё в 1960-е годы выдвинул теорию строения планет-гигантов, а в конце XX века начал создавать математически обоснованную теорию тектоники континентов .

Промежуточный слой между литосферой и горячим железным ядром в центре Земли - мантия - состоит из силикатных пород. Температура в ней меняется от 500 градусов Цельсия в верхней части до 4000 градусов Цельсия на границе ядра. Поэтому с глубины 100 километров, где температура уже более 1300 градусов, вещество мантии ведёт себя как очень густая смола и течёт со скоростью 5-10 сантиметров в год, рассказывает Трубицын.

В результате в мантии, как в кастрюле с кипятком, возникают конвективные ячейки - области, где с одного края горячее вещество поднимается вверх, а с другого - остывшее опускается вниз.

"В мантии есть примерно восемь таких больших ячеек и ещё много мелких", -говорит учёный. Срединно-океанические хребты (например, в центре Атлантики) - это место, где вещество мантии поднимается к поверхности и где рождается новая кора. Кроме того, есть зоны субдукции, места, где плита начинает "подползать" под соседнюю и опускается вниз, в мантию. Зоны субдукции - это, например, западное побережье Южной Америки. Здесь происходят самые мощные землетрясения.

"Таким образом плиты принимают участие в конвективном кругообороте вещества мантии, которое во время нахождения на поверхности временно становится твёрдым. Погружаясь в мантию, вещество плиты снова нагревается и размягчается", - объясняет геофизик.

Кроме того, из мантии к поверхности поднимаются отдельные струи вещества - плюмы, и у этих струй есть все шансы уничтожить человечество. Ведь именно мантийные плюмы являются причиной появления супервулканов (см. ) Такие точки никак не связаны с литосферными плитами и могут оставаться на месте даже при движении плит. При выходе плюма возникает гигантский вулкан. Таких вулканов много, они есть на Гавайях, в Исландии, сходным примером является Йеллоустоунская кальдера. Супервулканы могут порождать извержения в тысячи раз мощнее, чем большинство обычных вулканов типа Везувия или Этны.

"250 миллионов лет назад такой вулкан на территории современной Сибири убил почти всё живое, выжили только предки динозавров", - говорит Трубицын.

Сошлись - разошлись

Литосферные плиты состоят из относительно тяжёлой и тонкой базальтовой океанической коры и более лёгких, но зато значительно более "толстых" континентов. Плита с континентом и "намороженной" вокруг него океанической корой может идти вперёд, при этом тяжёлая океаническая кора погружается под соседа. Но, когда сталкиваются континенты, они уже не могут погружаться друг под друга.

Например, примерно 60 миллионов лет назад Индийская плита оторвалась от того, что потом стало Африкой, и отправилась на север, а примерно 45 миллионов лет назад встретилась с Евразийской плитой, в месте столкновения выросли Гималаи - самые высокие горы на Земле.

Движение плит рано или поздно сведёт все континенты в один, как сходятся в один остров листья в водовороте. В истории Земли континенты примерно четыре-шесть раз объединялись и распадались. Последний суперконтинент Пангея существовал 250 миллионов лет назад, до него был суперконтинент Родиния, 900 миллионов лет назад, до него - ещё два. "И уже, похоже, скоро начнётся объединение нового континента", - уточняет учёный.

Он объясняет, что континенты работают как тепловой изолятор, мантия под ними начинает разогреваться, возникают восходящие потоки и поэтому суперконтиненты через некоторое время снова распадаются.

Америка "унесёт" Чукотку

Крупные литосферные плиты рисуют в учебниках, их может назвать любой: Антарктическая плита, Евразийская, Северо-Американская, Южно-Американская, Индийская, Австралийская, Тихоокеанская. Но на границах между плитами возникает настоящий хаос из множества микроплит.

Например, граница между Северо-Американской плитой и Евразийской проходит совсем не по Берингову проливу, а намного западнее, по хребту Черского. Чукотка, таким образом, оказывается частью Северо-Американской плиты. При этом Камчатка отчасти находится в зоне Охотской микроплиты, а отчасти - в зоне Беринговоморской микроплиты. А Приморье расположено на гипотетической Амурской плите, западный край которой упирается в Байкал.

Сейчас восточная окраина Евразийской плиты и западный край Северо-Американской "крутятся", как шестерёнки: Америка проворачивается против часовой стрелки, а Евразия по часовой. В результате Чукотка может окончательно оторваться "по шву", и в этом случае на Земле может появиться гигантский круговой шов, который будет проходить через Атлантику, Индийский, Тихий и Северный Ледовитый океан (где он пока закрыт). А сама Чукотка продолжит движение "в орбите" Северной Америки.

Спидометр для литосферы

Теория Вегенера возродилась не в последнюю очередь потому, что у учёных появилась возможность с высокой точностью измерять смещение континентов. Сейчас для этого используют спутниковые системы навигации, но есть и другие методы. Все они нужны для построения единой международной системы координат - International Terrestrial Reference Frame (ITRF).

Один из этих методов - радиоинтерферометрия со сверхдлинной базой (РСДБ). Суть её заключается в одновременных наблюдениях с помощью нескольких радиотелескопов в разных точках Земли. Разница во времени получения сигналов позволяет с высокой точностью определять смещения. Два других способа измерить скорость - лазерные дальномерные наблюдения с помощью спутников и доплеровские измерения. Все эти наблюдения, в том числе с помощью GPS, проводятся на сотнях станций, все эти данные сводятся воедино, и в итоге мы получаем картину дрейфа континентов.

Например, крымский Симеиз, где находится станция лазерного зондирования, а также спутниковая станция определения координат, "едет" на северо-восток (по азимуту около 65 градусов) со скоростью примерно 26,8 миллиметра в год. Подмосковный Звенигород движется примерно на миллиметр в год быстрее (27,8 миллиметра в год) и курс держит восточнее - около 77 градусов. А, скажем, гавайский вулкан Мауна-Лоа двигается на северо-запад в два раза быстрее - 72,3 миллиметра в год.

Литосферные плиты тоже могут деформироваться, и их части могут "жить своей жизнью", особенно на границах. Хотя масштабы их самостоятельности значительно скромнее. Например, Крым ещё самостоятельно двигается на северо-восток со скоростью 0,9 миллиметра в год (и при этом растёт на 1,8 миллиметра), а Звенигород с той же скоростью двигается куда-то на юго-восток (и вниз - на 0,2 миллиметра в год).

Трубицын говорит, что эта самостоятельность отчасти объясняется "личной историей" разных частей континентов: основные части континентов, платформы, могут быть фрагментами древних литосферных плит, которые "срослись" со своими соседями. Например, Уральский хребет - один из швов. Платформы относительно жёсткие, но части вокруг них могут деформироваться и ехать по своей воле.