Как определить валентность 3 элементов в соединении. Валентность. Определение валентности. Элементы с постоянной валентностью. Если известна валентность одного из элементов в бинарном соединении, можно найти валентность другого

(нем. Valenz ). В 1789 году Уильям Хиггинс опубликовал работу, в которой высказал предположение о существовании связей между мельчайшими частицами вещества.

Однако точное и позже полностью подтверждённое понимание феномена валентности было предложено в 1852 году химиком Эдуардом Франклендом в работе, в которой он собрал и переосмыслил все существовавшие на тот момент теории и предположения на этот счёт. . Наблюдая способность к насыщению разных металлов и сравнивая состав органических производных металлов с составом неорганических соединений, Франкленд ввёл понятие о «соединительной силе », положив этим основание учению о валентности. Хотя Франкленд и установил некоторые частные закономерности, его идеи не получили развития.

Решающую роль в создании теории валентности сыграл Фридрих Август Кекуле . В 1857 г. он показал, что углерод является четырёхосновным (четырёхатомным) элементом, и его простейшим соединением является метан СН 4 . Уверенный в истинности своих представлений о валентности атомов, Кекуле ввёл их в свой учебник органической химии: основность, по мнению автора - фундаментальное свойство атома, свойство такое же постоянное и неизменяемое, как и атомный вес . В 1858 г. взгляды, почти совпадающие с идеями Кекуле, высказал в статье «О новой химической теории » Арчибальд Скотт Купер .

Уже три года спустя, в сентябре 1861 г. А. М. Бутлеров внёс в теорию валентности важнейшие дополнения. Он провёл чёткое различие между свободным атомом и атомом, вступившим в соединение с другим, когда его сродство «связывается и переходит в новую форму ». Бутлеров ввёл представление о полноте использования сил сродства и о «напряжении сродства », то есть энергетической неэквивалентности связей, которая обусловлена взаимным влиянием атомов в молекуле. В результате этого взаимного влияния атомы в зависимости от их структурного окружения приобретают различное «химическое значение ». Теория Бутлерова позволила дать объяснение многим экспериментальным фактам, касавшимся изомерии органических соединений и их реакционной способности.

Огромным достоинством теории валентности явилась возможность наглядного изображения молекулы. В 1860-х гг. появились первые молекулярные модели. Уже в 1864 г. А. Браун предложил использовать структурные формулы в виде окружностей с помещёнными в них символами элементов, соединённых линиями, обозначающими химическую связь между атомами; количество линий соответствовало валентности атома. В 1865 г. А. фон Гофман продемонстрировал первые шаростержневые модели, в которых роль атомов играли крокетные шары. В 1866 г. в учебнике Кекуле появились рисунки стереохимических моделей , в которых атом углерода имел тетраэдрическую конфигурацию.

Современные представления о валентности

С момента возникновения теории химической связи понятие «валентность» претерпело существенную эволюцию. В настоящее время оно не имеет строгого научного толкования, поэтому практически полностью вытеснено из научной лексики и используется, преимущественно, в методических целях.

В основном, под валентностью химических элементов понимается способность свободных его атомов к образованию определённого числа ковалентных связей . В соединениях с ковалентными связями валентность атомов определяется числом образовавшихся двухэлектронных двухцентровых связей. Именно такой подход принят в теории локализованных валентных связей , предложенной в 1927 году В. Гайтлером и Ф. Лондоном в 1927 г. Очевидно, что если в атоме имеется n неспаренных электронов и m неподелённых электронных пар, то этот атом может образовывать n + m ковалентных связей с другими атомами . При оценке максимальной валентности следует исходить из электронной конфигурации гипотетического, т. н. «возбуждённого» (валентного) состояния. Например, максимальная валентность атома бериллия, бора и азота равна 4 (например, в Be(OH) 4 2- , BF 4 - и NH 4 +), фосфора - 5 (PCl 5), серы - 6 (H 2 SO 4), хлора - 7 (Cl 2 O 7).

В ряде случаев, с валентностью отождествляются такие характеристики молекулярной системы как степень окисления элемента, эффективный заряд на атоме, координационное число атома и т. д. Эти характеристики могут быть близки и даже совпадать количественно, но ни коим образом не тождественны друг другу . Например, в изоэлектронных молекулах азота N 2 , монооксида углерода CO и цианид-ионе CN - реализуется тройная связь (то есть валентность каждого атома равна 3), однако степень окисления элементов равна, соответственно, 0, +2, −2, +2 и −3. В молекуле этана (см. рис.) углерод четырёхвалентен, как и в большинстве органических соединений, тогда как степень окисления формально равна −3.

Особенно это справедливо для молекул с делокализованными химическими связями, например в азотной кислоте степень окисления азота равна +5, тогда как азот не может иметь валентность выше 4. Известное из многих школьных учебников правило - «Максимальная валентность элемента численно равна номеру группы в Периодической таблице» - относится исключительно к степени окисления. Понятия «постоянной валентности» и «переменной валентности» также преимущественно относятся к степени окисления.

См. также

Примечания

Ссылки

  • Угай Я. А. Валентность, химическая связь и степень окисления - важнейшие понятия химии // Соросовский образовательный журнал . - 1997. - № 3. - С. 53-57.
  • / Левченков С. И. Краткий очерк истории химии

Литература

  • Л. Паулинг Природа химической связи. М., Л.: Гос. НТИ хим. литературы, 1947.
  • Картмелл, Фоулс. Валентность и строение молекул. М.: Химия, 1979. 360 с.]
  • Коулсон Ч. Валентность. М.: Мир, 1965.
  • Маррел Дж., Кеттл С., Теддер Дж. Теория валентности. Пер. с англ. М.: Мир. 1968.
  • Развитие учения о валентности. Под ред. Кузнецова В. И. М.: Химия, 1977. 248с.
  • Валентность атомов в молекулах / Корольков Д. В. Основы неорганической химии. - М.: Просвещение, 1982. - С. 126.

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Валентность" в других словарях:

    ВАЛЕНТНОСТЬ, мера «соединительной способности» химического элемента, равная числу индивидуальных ХИМИЧЕСКИХ СВЯЗЕЙ, которые может образовать один АТОМ. Валентность атома определяется числом ЭЛЕКТРОНОВ на самом верхнем (валентном) уровне (внешней… … Научно-технический энциклопедический словарь

    ВАЛЕНТНОСТЬ - (от лат. valere иметь значение), или атомность, число атомов водорода или эквивалентных ему атомов или радикалов, к рое может присоединить данный атом или радикал. В. является одной из основ распределения элементов в периодической системе Д. И.… … Большая медицинская энциклопедия

    Валентность - * валентнасць * valence термин происходит от лат. имеющий силу. 1. В химии это способность атомов химических элементов образовывать определенное число химических связей с атомами др. элементов. В свете строения атома В. это способность атомов… … Генетика. Энциклопедический словарь

    - (от лат. valentia сила) в физике число, показывающее, со сколькими атомами водорода может соединяться данный атом или замещать их. В психологии валентность есть идущее из Англии обозначение для побуждающей способности. Философский… … Философская энциклопедия

    Атомность Словарь русских синонимов. валентность сущ., кол во синонимов: 1 атомность (1) Словарь синонимов ASIS. В.Н. Тришин … Словарь синонимов

    ВАЛЕНТНОСТЬ - (от лат. valentia – крепкий, прочный, влиятельный). Способность слова к грамматическому сочетанию с другими словами в предложении (например, у глаголов валентность определяет способность сочетаться с подлежащим, прямым или косвенным дополнением) … Новый словарь методических терминов и понятий (теория и практика обучения языкам)

    - (от латинского valentia сила), способность атома химического элемента присоединять или замещать определенное число других атомов или атомных групп с образованием химической связи … Современная энциклопедия

    - (от лат. valentia сила) способность атома химического элемента (или атомной группы) образовывать определенное число химических связей с другими атомами (или атомными группами). Вместо валентности часто пользуются более узкими понятиями, напр.… … Большой Энциклопедический словарь

    ВАЛЕНТНОСТЬ, валентности, мн. нет, жен. (от лат. valens имеющий ценность, значение) (хим.). То же, что атомность. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    ВАЛЕНТНОСТЬ, и, жен. (спец.). Способность атома (или атомной группы) образовывать химические связи с другими атомами (или атомными группами). | прил. валентный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    - (от лат. valentia сила), способность атомов элементов к образованию химических связей; количественно характеризуется числом. В. можно рассматривать как способность атома отдавать или присоединять определ. число эл нов внеш. электронных оболочек… … Физическая энциклопедия

Книги

  • Устойчивые сравнения в системе русской фразеологии , В. М. Огольцев , В монографии раскрывается структурно-семантическое многообразие устойчивых сравнений, специфика их значений, взаимосвязь с фразеологическими единицами, выявляются их внутрисистемные… Категория: Учебники по языкам Издатель:

При рассмотрении химических элементов можно заметить, что количество атомов у одного и того же элемента в разных веществах разнится. Каким же образом правильно записать формулу и не ошибиться в индексе химического элемента? Это легко сделать, если иметь представление, что такое валентность.

Для чего нужна валентность?

Валентность химических элементов – это способность атомов элемента образовывать химические связи, то есть присоединять к себе другие атомы. Количественной мерой валентности является число связей, которые образует данный атом с другими атомами или атомными группами.

В настоящее время валентность представляет собой число ковалентных связей (в том числе возникших и по донорно-акцепторному механизму), которыми данный атом соединен с другими. При этом не учитывается полярность связей, а значит, валентность не имеет знака и не может быть равной нулю.

Ковалентная химическая связь – это связь, осуществляемая за счет образования общих (связывающих) электронных пар. Если между двумя атомами имеется одна общая электронная пара, то такая связь называется одинарной, если две – двойной, если три – тройной.

Как находить валентность?

Первый вопрос, который волнует учеников 8 класса, начавших изучать химию – как определить валентность химических элементов? Валентность химического элемента можно посмотреть в специальной таблице валентности химических элементов

Рис. 1. Таблица валентности химических элементов

Валентность водорода принята за единицу, так как атом водорода может образовывать с другими атомами одну связь. Валентность других элементов выражаем числом, которое показывает, сколько атомов водорода может присоединить к себе атом данного элемента. Например, валентность хлора в молекуле хлористого водорода равна единице. Следовательно формула хлористого водорода будет выглядеть так: HCl. Так как и у хлора и у водорода валентность равна единице, никакой индекс не используется. И хлор и водород являются одновалентными, так как одному атому водорода соответствует один атом хлора.

Рассмотрим другой пример: валентность углерода в метане равна четырем, валентность водорода – всегда единица. Следовательно, рядом с водородом следует поставить индекс 4. Таким образом формула метана выглядит так: CH 4 .

Очень многие элементы образуют соединения с кислородом. Кислород всегда является двухвалентным. Поэтому в формуле воды H 2 O, где встречаются всегда одновалентный водород и двухвалентный кислород, рядом с водородом ставится индекс 2. Это значит, что молекула воды состоит из двух атомов водорода и одного атома кислорода.

Рис. 2. Графическая формула воды

Не все химические элементы имеют постоянную валентность, у некоторых она может изменяться в зависимости от соединений, где используется данный элемент. К элементам с постоянной валентностью относятся водород и кислород, к элементам с переменной валентностью относятся, например, железо, сера, углерод.

Как определить валентность по формуле?

Если у вас перед глазами нет таблицы валентности, но есть формула химического соединения, то возможно определение валентности по формуле. Возьмем для примера формулу оксид марганца – Mn 2 O 7

Рис. 3. Оксид марганца

Как известно, кислород является двухвалентным. Чтобы выяснить, какой валентностью обладает марганец, необходимо валентность кислорода умножить на число атомов газа в этом соединении:

Получившееся число делим на количество атомов марганца в соединении. Получается:

Средняя оценка: 4.5 . Всего получено оценок: 1078.

Рассматривая формулы различных соединений, нетрудно заметить, что число атомов одного и того же элемента в молекулах различных веществ не одинаково. Например, HCl, NH 4 Cl, H 2 S, H 3 PO 4 и т.д. Число атомов водорода в этих соединениях изменяется от 1 до 4. Это характерно не только для водорода.

Как же угадать, какой индекс поставить рядом с обозначением химического элемента? Как составляются формулы вещества? Это легко сделать, когда знаешь валентность элементов, входящих в состав молекулы данного вещества.

это свойство атома данного элемента присоединять, удерживать или замещать в химических реакциях определённое количество атомов другого элемента. За единицу валентности принята валентность атома водорода. Поэтому иногда определение валентности формулируют так: валентность это свойство атома данного элемента присоединять или замещать определённое количество атомов водорода.

Если к одному атому данного элемента прикрепляется один атом водорода, то элемент одновалентен, если два двухвалентен и т.д. Водородные соединения известны не для всех элементов, но почти все элементы образуют соединения с кислородом О. Кислород считается постоянно двухвалентным.

Постоянная валентность:

I H, Na, Li, K, Rb, Cs
II O, Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd
III B, Al, Ga, In

Но как поступить в том случае, если элемент не соединяется с водородом? Тогда валентность необходимого элемента определяют по валентности известного элемента. Чаще всего её находят, используя валентность кислорода, потому что в соединениях его валентность всегда равно 2. Например, не составит труда найти валентность элементов в следующих соединениях: Na 2 O (валентность Na 1, O 2), Al 2 O 3 (валентность Al 3, O 2).

Химическую формулу данного вещества можно составить, только зная валентность элементов. Например, составить формулы таких соединений, как CaO, BaO, CO, просто, потому что число атомов в молекулах одинаково, так как валентности элементов равны.

А если валентности разные? Когда мы действуем в таком случае? Необходимо запомнить следующее правило: в формуле любого химического соединения произведение валентности одного элемента на число его атомов в молекуле равно произведению валентности на число атомов другого элемента. Например, если известно, что валентность Mn в соединении равна 7, а O 2, тогда формула соединения будет выглядеть так Mn 2 O 7.

Как же мы получили формулу?

Рассмотрим алгоритм составления формул по валентности для состоящих из двух химических элементов.

Существует правило, что число валентностей у одного химического элемента равно числу валентностей у другого . Рассмотрим на примере образования молекулы, состоящей из марганца и кислорода.
Будем составлять в соответствии с алгоритмом:

1. Записываем рядом символы химических элементов:

2. Ставим над химическими элементами цифрами их валентности (валентность химического элемента можно найти в таблице периодической системы Менделева, у марганца 7, у кислорода 2.

3. Находим наименьшее общее кратное (наименьшее число, которое делится без остатка на 7 и на 2). Это число 14. Делим его на валентности элементов 14: 7 = 2, 14: 2 = 7, 2 и 7 будут индексами, соответственно у фосфора и кислорода. Подставляем индексы.

Зная валентность одного химического элемента, следуя правилу: валентность одного элемента × число его атомов в молекуле = валентность другого элемента × число атомов этого (другого) элемента, можно определить валентность другого.

Mn 2 O 7 (7 · 2 = 2 · 7).

Понятие о валентности было введено в химию до того, как стало известно строение атома. Сейчас установлено, что это свойство элемента связано с числом внешних электронов. Для многих элементов максимальная валентность вытекает из положения этих элементов в периодической системе.

Остались вопросы? Хотите знать больше о валентности?
Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

В окружающем нас мире отдельные атомы химических элементов "сами по себе" существуют очень редко, как правило, атомы различных элементов соединяются друг с другом, образуя молекулы.

Если вместе соединяется несколько одинаковых атомов, получается простое вещество (современная наука знает порядка 500 простых веществ), но гораздо чаще вместе соединяются не одинаковые атомы, которые образуют сложные вещества (см. Атомно-молекулярная теория).

Примеры простых веществ: O 2 (кислород), O 3 (озон).

Примеры сложных веществ: NaCl (поваренная соль), H 2 SO 4 (серная кислота), H 2 O (вода).

Состав и строение молекул описывают при помощи химических формул, которая показывает какие химические элементы входят в состав вещества, а также сколько атомов конкретного химического элемента входит в молекулу вещества. Например, в молекулу серной кислоты (H 2 SO 4) входит водород (2 атома), сера (1 атом), кислород (4 атома).

По химической формуле очень легко определить молекулярную массу вещества, которая равна сумме атомных масс.

Молекулярная масса серной кислоты равна: H 2 SO 4 = 1·2 + 32 + 16·4 = 98.

Еще одной весьма важной количественной характеристикой взаимодействующих между собой атомов, является валентность .

Валентность определяется по количеству связей, который образует атом с другими атомами. Чтобы написать правильную формулу вещества, необходимо знать валентность атомов, входящих в это вещество.

В структурных формулах химические связи между атомами обозначают чертой (см. формулы ковалентных связей), при этом каждая химическая связь образуется двумя электронами соседних атомов (каждый из атомов выделяет для этой цели по одному своему электрону, находящемуся на крайней внешней орбитали). Таким образом, валентность атома (количество связей, которое атом может образовать с соседними атомами) определяется числом его неспаренных валентных электронов.

Некоторые химические элементы всегда проявляют постоянную валентность:








Другие элементы имеют переменную валентность.



Валентность неизвестного атома вещества можно определить по другим атомам с известной валентностью, входящих в это вещество.

Например, сера может иметь валентности - 2, 4, 6.

Определим, какую валентность имеет сера в соединениях: H 2 S, SO 2 , SO 3 ?

Известно, что валентность водорода = 1, а валентность кислорода = 2. Чтобы решить задачу необходимо известную валентность атома умножить на количество этих атомов, входящих в вещество: Н 2 = 2; О 2 = 4; О 3 = 6. Так как во всех формулах присутствует только один атом серы, то полученные цифры и будут обозначать валентность серы в этих формулах.

Зная валентности всех элементов, входящих в вещество, можно составить правильную химическую формулу вещества. Для этого необходимо сначала найти наименьшее общее кратное, а затем, для определения числа атомов конкретного элемента наименьшее общее кратное разделить на валентность каждого атома, входящего в формулу.

Например, в оксид фосфора входят фосфор (валентность 5) и кислород (2). Наименьшее общее кратное будет 5·2 = 10. 10/5 = 2; 10/2 = 5. Получаем формулу P 2 O 5 .

Почему одни атомы могут иметь только одну валентность, а другие - несколько? Для ответа на этот вопрос см.

Различные химические элементы отличаются по своей способности создавать химические связи, то есть соединяться с другими атомами. Поэтому в сложных веществах они могут находиться только в определенных соотношениях. Разберемся, как определить валентность по таблице Менделеева.

Что такое валентность?

Существует такое определение валентности: это способность атома к образованию определенного числа химических связей. В отличие от , эта величина всегда только положительная и обозначается римскими цифрами.

В качестве единицы используется эта характеристика для водорода, которая принята равной I. Это свойство показывает, с каким числом одновалентных атомов может соединиться данный элемент. Для кислорода эта величина всегда равна II.

Знать эту характеристику необходимо, чтобы верно записывать химические формулы веществ и уравнения . Знание этой величины поможет установить соотношение между числом атомов различных типов в молекуле.

Данное понятие возникло в химии в XIX веке. Начало теории, объясняющей соединение атомов в различных соотношениях, положил Франкленд, но его идеи о «связывающей силе» не были очень распространены. Решающая роль в развитии теории принадлежала Кекуле. Он называл свойство образовывать некоторое количество связей основностью. Кекуле считал, что это фундаментальное и неизменное свойство каждого вида атомов. Важные дополнения к теории сделал Бутлеров. С развитием этой теории стало возможным наглядно изображать молекулы. Это очень помогло в изучении строения различных веществ.

Чем поможет периодическая таблица?

Находить валентность можно, посмотрев на номер группы в короткопериодном варианте. Для большинства элементов, у которых эта характеристика постоянная (принимает только одно значение), она совпадает с номером группы.

Такие свойства имеют главных подгрупп. Почему? Номер группы соответствует числу электронов на внешней оболочке. Эти электроны называются валентными. Именно они отвечают за возможность соединяться с другими атомами.

Группу составляют элементы с похожим устройством электронной оболочки, а сверху вниз возрастает заряд ядра. В короткопериодной форме каждая группа делится на главную и побочную подгруппы. Представители главных подгрупп - это s и p-элементы, представители побочных подгрупп имеют электроны на d и f-орбиталях.

Как определить валентность химических элементов, если она меняется? Она может совпадать с номером группы или равняться номеру группы минус восемь, а также принимать другие значения.

Важно! Чем выше и правее элемент, тем его свойство образовывать взаимосвязи меньше. Чем он более смещен вниз и влево, тем она больше.

То, как изменяется валентность в таблице Менделеева для конкретного вида атома, зависит от структуры его электронной оболочки. Сера, например, может быть двух-, четырех- и шестивалентной.

В основном (невозбужденном) состоянии у серы два неспаренных электрона находятся на подуровне 3р. В таком состоянии она может соединиться с двумя атомами водорода и образовать сероводород. Если сера перейдет в более возбужденное состояние, то один электрон перейдет на свободный 3d-подуровень, и неспаренных электронов станет 4.

Сера станет четырехвалентной. Если сообщить ей еще больше энергии, то еще один электрон перейдет с подуровня 3s на 3d. Сера перейдет в еще более возбужденное состояние и станет шестивалентной.

Постоянная и переменная

Иногда способность к образованию химических связей может меняться. Она зависит от того, в какое соединение входит элемент. Например, сера в составе H2S двухвалентна, в составе SO2 — четырехвалентна, а в SO3 - шестивалентна. Наибольшее из этих значений называется высшим, а наименьшая - низшим. Высшую и низшую валентности по таблице Менделеева можно установить так: высшая совпадает с номером группы, а низшая равняется 8 минус номер группы.

Как определить валентность химических элементов и то, изменяется ли она? Нужно установить, имеем мы дело с металлом или неметаллом. Если это металл, нужно установить, относится он к главной или побочной подгруппе.

  • У металлов главных подгрупп способность к образованию химических взаимосвязей постоянная.
  • У металлов побочных подгрупп - переменная.
  • У неметаллов - также переменная. В большинстве случаев она принимает два значения - высшее и низшее, но иногда может быть и большее число вариантов. Примеры - сера, хлор, бром, йод, хром и другие.

В соединениях низшую валентность проявляет тот элемент, который находится выше и правее в периодической таблице, соответственно, высшую - тот, который левее и ниже.

Часто способность образовывать химические связи принимает больше двух значений. Тогда по таблице узнать их не получится, а нужно будет выучить. Примеры таких веществ:

  • углерод;
  • сера;
  • хлор;
  • бром.

Как определить валентность элемента в формуле соединения? Если она известна для других составляющих вещества, это несложно. Например, требуется рассчитать это свойство для хлора в NaCl. Натрий - элемент главной подгруппы первой группы, поэтому он одновалентен. Следовательно, хлор в этом веществе тоже может создать только одну связь и тоже одновалентен.

Важно! Однако так не всегда можно узнать это свойство для всех атомов в сложном веществе. Для примера возьмем HClO4. Зная свойства водорода, можно только установить, что ClO4 - одновалентный остаток.

Как еще узнать эту величину?

Способность образовывать определенное количество связей не всегда совпадает с номером группы, и в некоторых случаях ее придется просто заучить . Здесь на помощь придет таблица валентности химических элементов, где приведены значения этой величины. В учебнике химии за 8 класс приведены значения способности соединяться с другими атомами наиболее распространенных видов атомов.

Н, F, Li, Na, K 1
O, Mg, Ca, Ba, Sr, Zn 2
B, Al 3
C, Si 4
Cu 1, 2
Fe 2, 3
Cr 2, 3, 6
S 2, 4, 6
N 3, 4
P 3, 5
Sn, Pb 2, 4
Cl, Br, I 1, 3, 5, 7

Применение

Стоит сказать, что ученые-химики в настоящее время понятие валентности по таблице Менделеева почти не используют. Вместо него для способности вещества образовывать определенное число взаимосвязей применяют понятие степени окисления, для веществ с структурой - ковалентность, а для веществ ионного строения - заряд иона.

Однако рассматриваемое понятие применяют в методических целях. С его помощью легко объяснить, почему атомы разных видов соединяются в тех соотношениях, которые мы наблюдаем, и почему эти соотношения для разных соединений различны.

На данный момент подход, согласно которому соединение элементов в новые вещества всегда объяснялось с помощью валентности по таблице Менделеева независимо от типа связи в соединении, устарел. Сейчас мы знаем, что для ионной, ковалентной, металлической связей существуют разные механизмы объединения атомов в молекулы.

Полезное видео

Подведем итоги

По таблице Менделеева определить способность к образованию химических связей возможно не для всех элементов. Для тех, которые проявляют одну валентность по таблице Менделеева, она в большинстве случаев равна номеру группы. Если есть два варианта этой величины, то она может быть равна номеру группы или восемь минус номер группы. Существуют также специальные таблицы, по которым можно узнать эту характеристику.

Вконтакте