Дешифрирование космических снимков. Теория дешифрирования аэро- и космических снимков

Сопоставительное дешифрирование серии зональных снимков основано на использовании спектральных образов изобразивших­ся на снимке объектов. Спектральный образ объекта на фотогра­фическом снимке определяется визуально по тону его изображе­ния на серии зональных черно-белых снимков; тон оценивается по стандартизованной шкале в единицах оптической плотности. По полученным данным строится кривая спектрального образа, отражающая изменение оптической плотности изображения на снимках в разных спектральных зонах. При этом от­кладываемые по оси ординат значения оптической плотности от­печатков D, в отличие от принятого, вверх по оси убывают, чтобы кривая спектрального образа соответствовала кривой спектральной яркости. Некоторые коммерческие программы предусматривают автоматическое построение графиков спектральных образов по цифровым снимкам. Логическая схема сопоставительного дешифрирования многозональных снимков включает этапы: оп­ределение по снимкам спектрального образа объекта - сопоставление с известной спектральной отражательной способностью - опознавание объекта.

При дешифрировании контуров на всей площади снимка спек­тральный образ с успехом используется и для определения гра­ниц распространения дешифрируемых объектов, что осуществля­ется приемами сопоставительного дешифрирования. Поясним их. На каждом из зональных снимков по тону изображения разделя­ются определенные совокупности объектов, причем на снимках в различных зонах эти совокупности разные. Сопоставление зональных снимков позволяет разделить эти совокупности и выделить индивидуальные объекты. Такое сопоставление может быть реализовано совмещением («вычитанием») схем дешифрирования зональных снимков на каждой из которых выделены разные совокупности объектов или получением по зональным снимкам разностных изображений. Сопоставительное дешифрирование наиболее применимо при изучении растительных объектов, в первую очередь лесов и сельскохозяйственных культур.

При последовательном дешифрировании многозональных снимков используется также тот факт, что темные на более светлом фоне контуры растительности в красной зоне благодаря повыше­нию яркости ее изображения в ближней инфракрасной зоне как бы «исчезают» со снимка, не мешая восприятию крупных черт тектонического строения и рельефа. Это открывает возможность, например, при геоморфологических исследованиях дешифриро­вать по разным зональным снимкам формы рельефа разного гене­зиса - эндогенного по снимкам в ближней инфракрасной зоне и экзогенного - в красной. Последовательное дешифрирование пре­дусматривает технологически сравнительно простые операции поэтапного суммирования результатов.



Дешифрирование разновременных снимков. Разновременные снимки обеспечивают качественное изучение изменений иссле­дуемых объектов и косвенное дешифрирование объектов по их динамическим признакам.

Исследования динамики. Процесс извлечения динамической информации со снимков включает выявление изменений, их графическое отображение и содержательную интерпретацию. Для выявления изменений по разновременным снимкам их нужно сопоставить между собой, что осуществляется путем поочередного (раздельного) или одновременного (совместного) наблю­дения. Технически визуальное сопоставление разновременных снимков осуществляется наиболее просто их поочередным наблюдением. Очень старый способ «миганий» позволяет, например, достаточно просто обнаружить вновь появившийся отдельный объект быстрым поочередным рассматривани­ем двух разновременных снимков. Из серии снимков изменяющегося объекта может быть смонтирована иллюстративная кинограмма. Так, если получаемые через 0,5 ч с геостационарных спут­ников в одном и том же ракурсе снимки Земли смонтировать в анимационный файл, то возможно многократно воспроизвести на экране суточное развитие облачности.

Для выявления небольших изменений оказывается более эффективным не поочередное, а совместное наблюдение разновременных снимков, для чего используются специальные приемы: совмещение изображений (монокулярное и бинокулярное); синтезирование разностного или суммарного (обычно цветного) изображения; стереоскопические наблюдения.

При монокулярном наблюдении снимки, приведенные к одно­му масштабу и проекции и изготовленные на прозрачной основе, совмещают наложением один на другой и рассматривают на про­свет. При компьютерном дешифрировании снимков для совмест­ного просмотра изображений целесообразно использовать програм­мы, обеспечивающие восприятие совмещаемых изображений как полупрозрачных или «открывающие» участки одного изображе­ния на фоне другого.

Бинокулярное наблюдение, когда каждый из двух разновремен­ных снимков рассматривается одним глазом, наиболее удобно осуществлять с помощью стереоскопа, в котором каналы наблюдения имеют независимую регулировку увеличения и яркости изображения. Бинокулярные наблюдения дают хороший эффект при обнаружении изменений четких объектов на относительно однородном фоне, например изменений русла реки.

По разновременным черно-белым снимкам, возможно, получить и синтезированное цветное изображение. Правда, как показывает опыт, интерпретация такого цветного изображения затруднена. Этот технический прием результативен лишь при изучении динамики простых по структуре объектов, имеющих резкие границы.

При исследовании изменений вследствие движения, перемещения объектов наилучшие результаты дает стереоскопическое наблюдение разновременных снимков (псевдостереоэффект). Здесь можно оценить характер движения, стереоскопически воспринять границы движущегося объекта, например границы активного оползня на горном склоне.

В отличие от поочередного приемы совместного наблюдения разновременных снимков требуют предварительных коррекций - приведения их к одному масштабу, трансформирования, причем эти процедуры часто более сложны и трудоемки, чем само определение изменений.

Дешифрирование по динамическим признакам. Закономерности временных изменений географических объектов, для которых характерна смена состояний во времени, могут служить их дешифровочными признаками, которые, как уже отмечалось, называют временным образом объекта. Например, тепловые снимки, полученные в разное время суток, позволяют распознавать объекты, имеющие специфический суточный ход температуры. При работе с разновременными снимками используются те же приемы, что и при дешифрировании многозональных снимков. Они основаны на последовательном и сопоставительном анализе и синтезе и являются общими для работы с любыми сериями снимков.

Полевое и камеральное дешифрирование. При полевом дешифрировании опознавание объектов производится непосредственно на местности путем сличения объекта в натуре с его изображением на снимке. Результаты дешифрирования наносятся на снимок или прикрепленную к нему прозрачную накладку. Это самый достоверный вид дешифрирования, но и самый дорогой. Полевое де­шифрирование может выполняться не только на фотоотпечатках, но и на экранных (цифровых) снимках. В последнем случае обычно используется полевой микрокомпьютер с чувствительным эк­раном-планшетом, а также специальное программное обеспечение. Результаты дешифрирования отмечаются в поле на экране с помощью компьютерной ручки, закрепляются набором условных знаков и записываются в текстовой или табличной форме в несколько слоев памяти микрокомпьютера. Возможен ввод допол­нительной звуковой информации об объекте дешифрирования. При полевом дешифрировании нередко приходится наносить на снимки недостающие объекты. Досъемка производится глазомерным или инструментальным способом. Для этого применяются приемники спутникового позиционирования, позволяющие определять в поле координаты объектов, отсутствующих на снимке, практически с любой необходимой точностью. При дешифрировании снимков масштаба 1:25 000 и мельче удобно использовать портативные спутниковые приемники, соединенные с микрокомпьютером в единый полевой комплект дешифровщика.

К разновидности полевого дешифрирования относится аэровизуальное дешифрирование, которое наиболее эффективно в тундре, пустыне. Высоту и скорость полета вертолета или легкого са­молета выбирают в зависимости от масштаба снимков: они тем больше, чем мельче масштаб. Аэровизуальное дешифрирование результативно при работе с космическими снимками. Однако вы­полнение его непросто. Исполнитель должен уметь быстро ориентироваться и распознавать объекты.

При камеральном дешифрировании, которое представляет собой основной и наиболее распространенный вид дешифрирования, объект распознается по прямым и косвенным дешифровочным признакам без выхода в поле и непосредственного сличения изображения с объектом. На практике обычно комбинируют оба вида дешифрирования. Рациональная схема их сочетания предусматривает предварительное камеральное, выборочное полевое и окончательное камеральное дешифрирование аэрокосмических снимков. Соотношение полевого и камерального дешифрирования зависит и от масштаба снимков. Аэроснимки крупного масштаба дешифрируют преимущественно в поле. При работе с косми­ческими снимками, охватывающими значительные площади, возрастает роль камерального дешифрирования. Наземная полевая информация при работе с космическими снимками нередко заменяется картографической, получаемой по картам - топографическим, геологическим, почвенным, геоботаническим и др.

Эталонное дешифрирование. Камеральное дешифрирование основано на использовании дешифрованных эталонов, создаваемых в поле на типичные для данной территории ключевые участки. Таким образом, дешифровочные эталоны представляют собой снимки характерных участков с нанесенными на них результатами дешиф­рирования типичных объектов, сопровождаемые характеристикой дешифровочных признаков. Далее эталоны используются при камеральном дешифрировании, которое выполняется способом географической интерполяции и экстраполяции, т. е. путем распространения выявленных дешифровочных признаков на участки между эталонами и за их пределами. Камеральное дешифрирование с использованием эталонов получило развитие при топографическом картографировании труднодоступных районов, когда в ряде организаций создавались фототеки эталонов. Картографической службой нашей страны были изданы альбомы образцов дешифри­рования различных типов объектов на аэрофотоснимках. При тематическом дешифрировании космических снимков, в большин­стве своем многозональных, такую обучающую роль выполняют подготовленные в МГУ им. М.В.Ломоносова научно-методические атласы «Дешифрирование многозональных аэрокосмических снимков», содержащие методические рекомендации и примеры результатов дешифрирования различных компонентов природной среды, социально-экономических объектов, последствий антро­погенного воздействия на природу.

Подготовка снимков для визуального дешифрирования. Для географического дешифрирования редко используют оригинальные снимки. При дешифрировании аэрофотоснимков обычно применяют контактные отпечатки, а спутниковые снимки желательно дешифрировать «на просвет», используя диапозитивы на пленке, которые более полно передают мелкие и малоконтрастные детали космического изображения.

Преобразование снимков .Для более быстрого, простого и полного извлечения из снимка необходимой информации выполняют его преобразование, которое сводится к получению другого изображения с заданными свойствами. Оно направлено на выделение необходимой и удаление излишней информации. Следует подчеркнуть, что преобразование изображения не добавляет новой информации, а только приводит ее к виду, удобному для дальнейшего использования.

Преобразование снимков можно выполнить фотографическими, оптическими и компьютерными способами или при их сочетании. Фотографические способы основаны на различных режимах фотохимической обработки; оптические - на преобразовании светового потока, пропущенного через снимок. Наиболее рас­пространены компьютерные преобразования снимков. Можно ска­зать, что в настоящее время альтернативы компьютерным преобразованиям не существует. Распространенные компьютерные пре­образования снимков для визуального дешифрирования, такие, как компрессия-декомпрессия, преобразование контрастности, синтезирование цветных изображений, квантование и фильтрация, а также создание новых производных геоизображений.

Увеличение снимков. При визуальном дешифрировании принято использовать технические средства, расширяющие возможности глаза, например лупы с различным увеличением - от 2х до 10х. Полезна измерительная лупа со шкалой в поле зрения. Необходимость увеличения становится ясной из сравнения разрешающей способности снимков и глаза. Разрешающая способность глаза на расстоянии наилучшего зрения (250 мм) принимается равной 5 мм- 1 . Для различия, например, всех деталей на космическом фотографическом снимке, имеющем разрешающую способность 100 мм- 1 , его необходимо увеличить в 100/5 = 20 раз. Только в этом случае можно использовать всю информацию, заключенную в фотоснимке. Необходимо учитывать, что получить снимки с большим увеличением (более 10х) фотографическими или оптическими способами не просто: требуются фотоувеличители крупных размеров или очень высокая сложно осуществляемая освещенность оригиналов снимков.

Особенности наблюдения снимков на экране компьютера. Для восприятия снимков важны характеристики экрана дисплея: наилучшие результаты дешифрирования достигаются на экранах большого размера, воспроизводящих максимальное количество цветов и имеющих высокую частоту обновления изображения. Увеличение цифрового снимка на экране компьютера близко к опти­мальному в тех случаях, когда одному пикселу экрана pix соответствует один пиксел снимка.

Если известен размер пиксела на местности PIX (пространственное разрешение), то масштаб изображения снимка на экране дисплея равен:

Например, цифровой космический снимок TM/Landsat с размером пиксела на местности PIX = 30 м будет воспроизведен на экране дисплея с pix d = 0,3 мм в масштабе 1:100 000. При необходимости рассмотрения мелких деталей экранный снимок с помощью компьютерной программы можно дополнительно увеличить в 2, 3, 4 раза и более; при этом один пиксел снимка изображается 4, 9, 16 пикселами экрана и более, но изображение принимает заметную для глаза «пиксельную» структуру. На практике наиболее распространено дополнительное увеличение 2 - Зх. Для одно­временного просмотра на экране всего снимка в целом изображение приходится уменьшать. Однако в этом случае отображаются только каждые 2-е, 3-й, 4-е и т.д. строки и столбцы снимка и на нем неизбежны потери деталей и мелких объектов.

Время эффективной работы при дешифрировании экранных снимков короче, чем при визуальном дешифрировании отпечатков. Необходимо учитывать также текущие санитарные нормы работы на компьютере, регламентирующие, в частности, минимальное расстояние глаз дешифровщика от экрана (не менее 500 мм), длительность непрерывной работы, интенсивность электромагнитных полей, шума и т.д.

Приборы и вспомогательные средства. Часто в процессе визуального дешифрирования необходимо произвести несложные измерения и количественные оценки. Для этого применяют различного рода вспомогательные средства: палетки, шкалы и таблицы тонов, номограммы и т.д. Для стереоскопического рассматривания снимков применяют стереоскопы различных конструкций. Лучшим прибором для камерального дешифрирования следует считать стереоскоп с двойной наблюдательной системой, обеспечивающей просмотр стереопары двумя дешифровщиками. Перенос результатов дешифрирования с отдельных снимков на общую картографическую основу обычно выполняют с помощью небольшого специального оптико-механического прибора.

Оформление результатов дешифрирования. Результаты визуального дешифрирования наиболее часто представляют в графической, текстовой и реже цифровой формах. Обычно в итоге дешифровочных работ получают снимок, на котором графически выделены и обозначены условными знаками изучаемые объекты. Закрепление результатов дешифрирования выполняют и на прозрачной накладке. При работе на компьютере результаты удобно представлять в виде принтерных отпечатков (твердых копий). По космическим снимкам создаются так называемые схемы дешифрирования, которые по своему содержанию представляют фрагменты тематических карт, составленных в масштабе и проекции снимка.

Визуальный метод дешифрирования, прямые и косвенные признаки дешифрирования.

Материалы, используемые при визуальном дешифрировании

Понятие о дешифрировании снимков. Классификация дешифрирования.

Дешифрированием (интерпретацией) называется анализ видеоинформации с целью извлечения сведений о поверхности и недрах Земли (других планет, их спутников), расположенных на поверхности объектах, происходящих на поверхности и в близповерхностном пространстве процессах.

В состав сведений входят, например, определение пространственного положения объектов, их качественных и количественных характеристик, выяснение границ простирания изучаемых процессов и данные о их динамике и многое другое. В задачи дешифрирования входит также получение из иных источников информации, которая не может быть считана непосредственно со снимков, например сведений о наличии, положении и свойствах неотобразившихся объектов, названий населенных пунктов, рек, урочищ. Такими источниками могут служить материалы ранее выполненного дешифрирования, планы, карты, вспомогательные снимки, справочная литература, непосредственно местность.Результаты визуального дешифрирования фиксируются условными знаками на дешифрируемом изображении, машинного - тоновыми, цветовыми, знаковыми или иными условными обозначениями.

Другое определение дешифрирования:

Дешифрирование снимков (интерпретация)- процесс распознавания объектов местномти по фотографическому изображению и выявление их содержания с обозначением условными знаками качественных и количественных характеристик.

В зависимости от содержания дешифрирование делят на:

Общегеографическое

специальное (тематическое, отраслевое ).

Общегеографическое дешифрирование включает две разновидности:

Топографическое дешифрирование -производится для обнаружения, распознавания и получения характеристик объектов, которые должны быть изображены на топографических картах.Оно является одним из основ процессов технологической схемы обновления и создания карт.

Ландшафтное дешифрирование –выполняется для регионального и типологического райнирования местности и решения специальных задач.

Специальное (тематическое, отраслевое) дешифрирование производится для решения ведомственных задач по определению характеристик отдельных совокупностей объектов. Разновидностей тематического дешифрирования очень много. сельскохозяйственное, лесохозяйственное. геологическое, почвенное, геоботаническое и др. и другого ведомственного назначения. Если конечной задачей специального дешифрирования является составление тематических карт, например сельскохозяйственных, почвенных или геоботанических, то. при отсутствии подходящей топографической основы, специальное дешифрирование сопровождается топографическим.

Основой методической классификации дешифрирования на его современном уровне развития являются средства считывания и анализа видеоинформации. Исходя из этого, можно выделить следующие основные методы дешифрирования:

визуальный , в котором информация со снимков считывается и анализируется человеком:

машинно- визуальный , в котором видеоинформация предварительно преобразуется специализированными или универсальными интерпретационными машинам с целью облегчения последующего визуального анализа полученною изображения:

автоматизированный (диалоговый), в котором считывание со снимков и анализ. или непосредственный анализ построчно записанной видеоинформации, выполняются специализированными пли универсальными интерпретационными машинами при активном >части оператора:

автоматический (машинный), в котором дешифрирование полностью выполняется интерпретационными машинами. Человек определяет задачи и задает программу обработки и видеоинформации.

Во всех методах можно выделить низшие уровни классификации - способы и варианты способов.

Принципиальная схема дешифровочного процесса в любом методе остается неизменной - распознавание выполняется путем сопоставления и определения степени близости некоторого набора признаков дешифрируемою объекта с соответствующими эталонными признаками, находящимися в памяти человека или машины. Процессу распознавания при этом предшествует процесс обучения (или самообучения), при котором определяется перечень подлежащих дешифрированию объектов, отбирается совокупность их признаков и устанавливается допустимая степень их различия.

При недостаточном объеме априорной информации о классах объектов и их признаках человек и машина может поделить изобразившиеся объекты по близости некоторых признаков на однородные группы - кластеры, содержание которых определяется затем человеком или машиной с помощью дополнительных данных.

2. Визуальный метод дешифрирования, прямые и косвенные признаки дешифрирования .

Природные объекты, изображающиеся на снимках могут опознаваться и интерпретироваться дешифровщиком по их свойствам, которые находят отражение в дешифровочных признаках этих объектов. все дешифровочные признаки можно разделить на две группы: прямые дешифровочные признаки и косвенные.

К прямым признакам относят те свойства и характеристики объектов, которые непосредственно отображаются на снимках и могут восприниматься визуально или с использованием технических средств.

К прямым дешифровочным признака м относят форму и размеры изображения объектов в плане и по высоте, общий (интегральный) тон черно-белого или цвета цветного (спектрозонального) изображений, текстуру изображения.

Форма в большинстве случаев является достаточным признаком для разделения объектов природного и антропогенного происхождения. Объекты, созданные человеком, как правило, отличаются правильностью конфигурации. Так, например, любые здания и сооружения имеют правильные геометрические формы. То же можно сказать о каналах, шоссейных и железных дорогах, парках и скверах, пахотных и культурных кормовых угодьях и других объектах. Форма объектов используется иногда как косвенный признак для определения характеристик других объектов.

Размеры дешифрируемых объектов в большинстве случаев оцениваются относительно. Об относительной высоте объектов судят непосредственно по их изображению на краях снимков, полученных с помощью широкоугольных съемочных систем. О размерах, а также и о форме по высоте можно судить по падающим от объектов теням. Разумеется, что площадка, на которую падает тень, должна быть горизонтальной.

Размеры изображения объектов так же как и форма, искажаются вследствие влияния рельефа местности и специфики используемой в съемочной системе проекции.

Тон изображения является функцией яркости объекта в пределах спектральной чувствительности приемника излучений съемочной системы. В фотометрии аналог тона - оптическая плотность изображения. непостоянство данного признака связано со следующими факторами: условиями освещения, структуры поверхности, типа фотографического материала и условий его обработки, зоны электромагнитного спектра и других причин.Тон оценивается визуально путем отнесения изображения к определенной ступени нестандартизированной ахроматической шкалы, например тон светлый, светло-серый, серый и т. д. Число ступеней определяется порогом световой чувствительности зрительного аппарата человека.

Опытным путем установлено, что человеческий глаз Опытным путем установлено, что человеческий глаз может различать до 25 градаций серого тона, в практических целях чаще используется серая шкала тонов от семи до десяти ступеней (табл. 2).

Таблица 1Количественные характеристики плотности изображения

С помощью компьютеров возможно различать до 225 уровней серого тона по снимкам и пленкам. Кроме этого, эти уровни, в зависимости от поставленной задачи, можно группировать по определенным ступеням с их количественными характеристиками. Существенное влияние на тон фотоизображения оказывают фактурные свойства объектов, от которых зависит распределение отраженного от поверхности объекта света в пространство.

Оптическая плотность служит кодом, который передает свойства объектов.. Совершенно различные по цвету объекты могут отобразиться на черно-белом фотоснимке или телевизионном изображении одинаковым тоном. Учитывая нестабильность показателя, при дешифрировании фототон оценивают только в сочетании с другими дешифровочными признаками (например, структурой). Тем не менее именно фототон выступает как основной дешифровочный признак, формирующий очерта­ния границ, размеры и структуру изображения объекта.

Тон может быть достаточно информативным признаком при правильно выбранных элементах съемочной системы и условиях съемки.

Тон изображения пашни может значительно изменяться во времени и пространстве, гак как существенно зависит от состояния поверхности незанятых полей (перепаханная, боронованная, сухая, влажная и др.), от вида и фенофазы культур на занятых полях.

Цвет изображения является спектральной характеристикой и определяет энергию светового потока.. Цветоваягамма изображений является существенным признаком дешифрирования. Этот признак следует рассматривать в двух аспектах. В первом случае, когда изображение на воздушных и космических снимках формируется в цветах, близких к естественным цветам (цветные снимки), распознавание и классификация объектов местности не вызывает особых затруднений. В данном случае учитываются такие характеристики цвета, как его светлотаи насыщенность, а также различные оттенки одного и того же цвета. В другом случае цветное изображение формируется в произвольных цветах (псевдоцветах), как это имеет место при спектрозональной съёмке. Смысл этого сознательного искажения цветовой гаммы натуры на изображении состоит в том, что на снимках наблюдатель легче воспринимает цветовые контрасты деталей изображения, поэтому цветные воздушные и космические снимки обладают более высокой дешифрируемостью, чем черно-белые. Наи­луч­шие результаты получают при дешифрировании спектро­зональных аэро­снимков с более высоким цвето­вым контрастом

Объекты местно­сти Цвет (тон) изображения на аэроснимках
черно-белых цветных спектрозональных
Лес сосновый светло-серый темно-зеленый темно-пурпурный
Лес еловый серый зеленый коричневато-пурпур­ный
Лес лиственный яркий светло-серый светло-зеленый синевато- и зеленовато-пурпур­ный
Лес дубовый серый зеленый зеленовато-голубой с оттенками
Лес березовый светло-серый зеленый
Лес осиновый яркий светло-се­рый светло-зеленый
Кустарник лист­венный серый зеленый зеленовато-синий
Травянистая рас­ти­тельность серый зеленый серовато-голубой, светло-пурпурный
Полевые техни­че­ские культуры серый с оттен­ками зеленый с от­тен­ками голубой, кирпичный, виш­невый, пурпурный
Закрепленные пески серый серовато-жел­тый пурпурный
Постройки серый с оттенками светло-красный, светло-серый, зеленый однообразно пурпур­ный
Дороги с покрытиями серый светло-серый пурпурный

Цвета спектрозонального аэроснимка менее стабильны, чем цветного снимка в естественных цветах. При необходимости они могут быть значительно изменены с помощью светофильтров.

Существует особый приём при дешифрировании, когда цвет на изображениях используется для кодирования деталей изображения, имеющих одинаковую оптическую плотность. Этот метод широко используется при дешифрировании зональных снимков, полученных в результате многозональных съёмок. Он весьма эффективен при проведении ландшафтного дешифрирования. В этом случае отдельные элементарные ландшафтные единицы можно закодировать каким-либо цветом, исходя из их родственных признаков и свойств.

Тень как дешифровочный признак играет важную роль при дешифрировании объектов и их свойств. Падающая тень, отбрасываемая объектом на земную поверхность, расположенную со стороны, противоположной Солнцу, подчёркивает объёмность объекта и его форму. Её очертание и размер зависят от высоты Солнца, рельефа местности (участка), на которую падает тень, и направления освещения.

Существует несколько способов определения высоты объекта по падающей тени:

где l - длина тени объекта на аэроснимке;

m - знаменатель масштаба снимка;

n - относительная длина тени, которая берётся из таблиц В.И. Друри (см. Смирнов Л.Е., 1975)

где b₁ - длина тени объекта на аэроснимке;

h₂ - высота известного объекта на аэроснимке;

b₂ - длина тени на аэроснимке известного объекта

По форме падающей тени можно распознавать как искусственные объекты (постройки, столбы, пункты триангуляции), так и естественные объекты. Падающие тени в качестве признаков дешифрирования широко используются при изучении растительности. .Падающие тени отображают вытянутую форму силуэта объ­екта. Это свойство используют при дешифрировании изгородей, телеграфных столбов, водонапор­ных и силосных башен, наружных зна­ков пунктов геодезической сети, отдельных деревьев, а также резко выра­женных форм рельефа (обрывов, промоин и пр.). При этом следует иметь в виду, что на размер тени оказывает влияние рельеф местности.Для каждой породы характерна своя специфическая форма кроны, что находит отражение в её тени и позволяет определить её видовой состав. Например, форма падающей тени ели напоминает остроугольный треугольник, тогда как у сосны она овальная. Однако следует помнить, что тень - весьма динамичный дешифровочный признак (изменяется в течение суток). Она может превышать размер объекта при низком положении Солнца над горизонтом

Текстура (структура изображения) - характер распределения оптической плотности по полю изображения объекта. Структура изображения – наиболее устойчивый прямой дешифровочный признак, практически не зависящий от условий съемки. Структура представляет собой сложный признак, объединяющий неко­то­рые другие прямые дешифровочные признаки (форму, тон, размер, тень) компактной группы однородных и разнородных деталей изображения местности на снимке. Повторяемость, размещение и количество этих деталей приводят к выявлению новых свойств и способствуют повышению достоверности дешифрирования. Важность этого признака повышается с уменьшением масштаба снимка. Например, текстура массива леса образуется изображением на снимках крон отдельных деревьев, а при высоком разрешении съемочной системы - изображением также элементов крон - ветвей или даже листьев; текстура чистой пашни формируется отображением пахотных борозд или отдельных комьев.

Имеется достаточно большое число структур, образованных сочетаниями точек, площадей, узких полос различной формы, ширины и длины. Некоторые из них рассмотрены ниже.

Зернистая структура характерна для изображения лесов. Рисунок создается серыми пятнами округлой формы (кронами деревьев) на более темном фоне, создаваемом затененными промежутками между деревьями. Аналогичную структуру имеет изображение культурной растительности (садов).

Однородная структура образуется однотипной формой микрорельефа и характерна для низинных травянистых болот, степной равнины, глинистой пустыни, водоемов при спо­кой­ном состоянии воды.

Полосчатая структура характерна для изображений огородов и распаханных пашен и является следствием параллельного расположения борозд.

Мелкозернистая структура характерна для изображения кустарников различных пород.

Мозаичная структура образуется растительностью или почвенным покровом неодинаковой влажности и характерна для беспорядочно расположенных участков различного тона, размеров и форм. Аналогичная структура, создаваемая чередованием прямоугольников различ­ного раз­мера и плотности, характерна для изображения приуса­дебных участ­ков,

Пятнистая структура характерна для изображений садов и болот.

Квадратная структура характерна для некоторых типов лесных болот и населенных пунктов городского типа. Она образуется сочетанием участков леса, разделенных светлыми полосами болота, и читается как сочетания площадей однородного тона. Такую же структуру создают изображения многоэтажных зданий (относительно крупные прямоугольники) и элементов внутриквартальной за­стройки в насе­ленных пунктах.

По мере уменьшения масштаба текстура создается более крупными элементами местности, например отдельными полями пашни.. Текстура относится к наиболее информативным признакам. Именно по текстуре человек безошибочно опознает леса, сады, населенные пункты и многие другие объекты. Для перечисленных объектов текстура сравнительно устойчива во времени.

Косвенные признаки можно разделить на три основные группы. природные, антропогенные и природно-антропогенные. Косвенные дешифровочные признаки достаточно устойчивы, и за­висят от масштаба в меньшей степени.

К природным относятся взаимосвязи и взаимообусловленности объектов и явлений в природе. Их называют также ландшафтными . Такими признаками могут быть, например, зависимость вида растительного покрова от типа почвы, ее засоленности и увлажненности или связь рельефа с геологическим строением местности и их совместная роль в почвообразовательном процессе.

С помощью антропогенных косвенных признаков опознают объекты, созданные человеком. При этом используются функциональные связи между объектами, их положение в общем комплексе сооружений, зональная специфика организации территории, коммуникационное обеспечение объектов. Например, животноводческая ферма сельскохозяйственного предприятия может быть опознана по совокупности основных и вспомогательных построек, внутренней планировке территории, интенсивно выбитым прогонам, положению дешифрируемого комплекса сооружений относительно жилой зоны, характеру дорожной сети. Аналогично ремонтные мастерские опознаются по изображению расположенных на территории машин, конный завод надежно опознается по примыкающему к его территории манежу. При этом, каждое из сооружений комплекса отдельно, вне связи с прочими, не дешифрируется. . Например, соединяющая населенные пункты светлая извилистая ли­ния почти наверняка является изображением проселочной дороги; с той же вероятностью теряющиеся в лесу или в поле светлые извилистые линии – полевые или лесные дороги; постройка вблизи пересечения светлой извилистой полосы (грунтовой дороги) с железной до­ро­гой свидетельствует о наличии здесь переезда; обрывающаяся на берегу реки дорога и ее продолжение на другом берегу указывает на на­личие брода или парома; группа построек вблизи многократно раз­ветвляющейся железной до­роги подсказывает о наличии железнодо­рожной станции. Ло­гический анализ прямых и кос­венных дешифровочных при­знаков значи­тельно повышает достоверность дешифриро­ва­ния.

К природно-антропогенным косвенным признакам относятся, зависимость хозяйственной деятельности человека от определенных природных условий, проявление свойств природных объектов в деятельности человека и другое. Например, по размещению некоторых видов культур можно составить определенное суждение о свойствах почв, их увлажненности, по изменению влажности поверхности в местах расположения дрен дешифрируют элементы закрытой осушительной системы. Объекты, используемые при опознавании и определении характеристик недешифрующихся непосредственно объектов, называются индикаторами, а дешифрирование - индикационным. Такое дешифрирование может быть многоэтапным, когда непосредственные индикаторы дешифрируемых объектов опознаются с помощью вспомогательных индикаторов. Приемами индикационного дешифрирования решаются задачи по обнаружению и определению характеристик неотобразившихся на снимках объектов. Важнейшими индикаторами различных явлений при косвенном дешифрировании служат растительность, рельеф и гидрография.

Растительность является хорошим индикатором почв, четвертичных отложений, увлажнённости почвогрунтов и т.д. При дешифрировании могут использоваться следующие индикационные признаки растительности:

Морфологические признаки позволяют различать на аэрокосмических снимках древесную, кустарниковую и луговую растительность.

Флористические (видовые) признаки позволяют дешифрировать видовой состав, например, сосновые насаждения приурочены к песчаным автоморфным почвам, черноольховые – к дерново-глеевым почвам.

Физиологические признаки основаны на связи гидрогеологических и геохимических условий места произрастания с химическими свойствами пород. Например, на известняках лишайники имеют оранжевый цвет, а на гранитах - жёлтый.

Фенологические признаки базируются на различиях в ритмах развития растительности. Особенно это хорошо проявляется осенью у лиственных пород растительности в изменении окраски листьев. На цветных аэрокосмических снимках хорошо различается видовой состав растительности, который подчёркивает условия произрастания.

Фитоценотические признаки позволяют дешифрировать типы лесной растительности и ассоциации луговой растительности, которые приурочены к определённым условиям произрастания. Например, сосняки-лишайники произрастают на повышенных элементах рельефа с автоморфными рыхло-песчаными почвами, сосняки долгомошники приурочены к пониженным элементам рельефа и дерново-подзолисто-заболоченным почвам.

Рельеф является одним из важнейших индикаторов. Связь рельефа с другими компонентами природных комплексов, его большая роль в формировании внешнего облика ландшафтов и возможность непосредственного дешифрирования позволяют использовать рельеф как индикатор самых разнообразных природных объектов и их свойств. Такими индикаторами могут быть следующие морфометрические и морфологические особенности рельефа: а) абсолютные высоты и амплитуды колебаний высот на данном участке; б) общая расчленённость рельефа и углы наклона склонов; в) ориентировка отдельных форм рельефа и экспозиция склонов (солярная, ветровая), которые вместе с абсолютными высотами определяют климатические условия и водный режим на данной территории; г) связь рельефа с геологией; д) генезис рельефа, его возраст и современная динамика и др.

Гидрография является важным индикатором физико-географических и геологических условий. Тесная связь структуры и густоты гидрографической сети (озёр, рек и болот) с геологией и рельефом позволяет использовать аэрофоторисунок, особенно речной сети, как прямой ландшафтный признак при анализе местности в геоморфологическом, геологическом и палеографическом отношениях.

Дешифровочные признаки обычно используются совокупно, без подразделения их на какие-либо группы. Изображение на дешифрируемом участке обычно воспринимается человеком как единое целое - модель местности. На основе анализа модели создаемся предварительная гипотеза о сути объекта (явления) и его свойствах. Правильность гипотезы подтверждается или отвергаемся (иногда многократно) с помощью дополнительных признаков.

5. Информационные свойства снимков с точки зрения визуального дешифрирования

Для оценки информационных свойств снимка используют две характеристики:

1. информативность;

2. . дешифрируемость.

Информативность - экспертная оценка потенциальной возможности получения с данных снимков необходимых сведений об объектах. Подбор количественного критерия для оценки информативности снимка невозможен. информативность обычно оценивается словесно: высокая информативность,недостаточная информативность и т. д. В зависимости от целей дешифрирования (решаемых задач) одни и те же снимки могут признаны высокоинформативными и недостаточно информативными.

В основу формальной оценки объема информации, содержащейся в снимке, может быть положена ее связь с разрешающей способностью. Чем выше разрешающая способность снимков, тем больший объем информации в них содержится. На основе смысловой информации можно определить ценность ее для исследователя. Например, четкое изображение на инфракрасных аэроснимках породного состава лесной растительности указывает на эффективность использования данных снимков для дешифрирования ее видового состава. Путем дешифрирования аэрокосмических снимков можно получить самые разнообразные сведения, факты. Однако к информации относятся только те из них, которые отвечают поставленной задаче, цели.

Для определения максимального количества информации введено понятие «полная информация», под которой следует понимать ту информацию, которую в каждом конкретном случае можно извлечь из снимков, полученных при оптимальных технических и погодных условиях съемки, а также масштабе. Однако часто используются снимки, обладающие свойствами, отличными от оптимальных. Содержащееся в них количество информации в общем случае меньше полной информации и составляет оперативную информацию. В оперативную информацию входят те из необходимых сведений, которые можно рассчитывать: полу чить путем дешифрирования данных снимков. Однако извлеченная информация почти всегда меньше оперативной из-за ошибок дешифрирования. Ошибки при дешифрировании объектов могут возникать по следующим причинам: при дешифрировании слабоконтрастных объектов; ложное опознавание объектов из-за совпадения дешифровочных признаков (например, известняки и снежники). Однако часто дешифровщик сталкивается с помехами и шумом, которые не представляют ценности для исследователя. К помехам можно отнести наличие бликов, а также изображение на снимках толщи атмосферы, которая в виде дымки накладывается на изображение, или таких атмосферных явлений, как туман, пыльные бури и др. Качественное разнообразие и количество извлеченной информации в значительной степени определяются свойствами информационного поля снимков.

Простота сопоставления снимков с натурой, внешнее совпадение изображения объектов с тем, как мы их видим, определяют наглядность снимков. Объекты узнаются на снимках, если их изображение соответствует непосредственному зрительному образу и если оно хорошо известно из практики, например, облачность. Наглядность снимков всегда особенно ценилась. Предполагалось, что именно возможность прямого визуального распознавания является главным достоинством снимков с летательных аппаратов. Но по мере развития метода большое значение стали придавать выразительности изображения. Изображение тем выразительнее, чем интенсивнее и контрастнее выделены на нем объекты и явления, являющиеся предметом дешифрирования.

Таким образом, выразительность изображения характеризуется простотой дешифрирования объектов и явлений, наиболее существенных для решения поставленной задачи. Наглядность и выразительность в известном смысле противоположные, взаимоисключающие свойства аэрокосмического изображения. Так, наибольшей наглядностью обладают цветные в натуральных цветах снимки. Меньшая наглядность у цветных спектрозональных снимков, но зато при дешифрировании, например, лесной растительности они имеют большую выразительность. Наглядность и выразительность изображения связаны с его масштабом, но оптимальные по выразительности и наглядности масштабы снимков не совпадают друг с другом. Наглядность возрастает с укрупнением масштаба.

Дешифрируемость аэрокосмических снимков - это сумма их свойств, определяющих количество информации, которую можно получить путем дешифрирования снимков для решения данной задачи.Известно, что одни и те же снимки обладают разной дешифрируемостью по отношению к разным объектам и задачам. задачи. Количественно ее можно выразить через отношение оперативной информации (I 0), содержащейся в данных снимках, и Iп полной информации:

Однако часто для определения дешифрируемости снимков используется относительная дешифрируемость, которая характеризуется через отношение полезной информации (I), которую несет аэроснимок, к полной информации, которая может быть получена по аэроснимку:

Величина Dc называется коэффициентом дешифрируемости. Понятие «полная информация» может быть истолковано по-разному, в соответствии с этим относительная дешифрируемость может характеризовать различные свойства аэроснимков. Если за полную информацию принять максимальную информационную емкость аэроснимков, то коэффициент дешифрируемости будет показывать загруженность аэроснимков бесполезными сведениями, иными словами «уровень шума

По этой же формуле (Dc = I / Imax) может быть вычислена и относительная дешифрируемость отдельных объектов. При соответствующем подходе она позволяет сравнивать аэроснимки, снятые на различной пленке, отпечатанные на различной бумаге и т. д. Таким образом, через коэффициент дешифрируемости выражается ценность аэроснимка как источника информации.

Полнота дешифрирования может быть охарактеризована через отношение использованной (распознанной) полезной информации (I 1) ко всей полезной информации, содержащейся в данных

аэроснимках:

Полнота дешифрирования в большой мере зависит от подготовки дешифровщиков, их опыта и специальных знаний.

Под достоверностью дешифрирования следует понимать вероятность правильного опознавания или истолкования объектов. Она может оцениваться через отношение количества правильно распознанных объектов (n) к сумме всех распознанных объектов.

Дешифрируемость может быть улучшена путем увеличения изображения, изменения контраста, уменьшения смаза и других преобразований.

Например, для снимков, полученных аэрофотоаппаратом с фокусным расстоянием / = 7 0 мм, С = 250 = 3,5. Следовательно,

при стереоскопическом рассматривании снимков, полученных короткофокусными аэрофотоаппаратами, рельеф местности воспринимается утрированным, что облегчает изучение различных его микроформ. При этом следует учитывать, что при стереоскопическом восприятии таких снимков склоны кажутся значительно круче, чем они есть на самом деле.

При визуальном дешифрировании бывает полезным, используя свойства бинокулярного зрения, наблюдать не только стереоскопические пары снимков, но и пары, составленные из снимков разного цвета (бинокулярное смешение цветов), черно-белого и цветного, резкого (глянцевого) и нерезкого (матового) снимков и т.д.

3.1.3. Виды и методика визуального дешифрирования снимков

При визуальном дешифрировании исполнитель распознает объекты на аэрокосмическом снимке, определяет их качественные и некоторые количественные характеристики, выявляет взаимосвязи между объектами, явлениями и процессами, а также закрепляет результаты дешифрирования в графическом виде.

Важный методологический подход при географическом дешифрировании - анализ дешифрируемых объектов в развитии и в неразрывной связи с окружающей их средой. Дешифрирование выполняется по принципу от общего к частному. Аэрокосмический снимок для географа - прежде всего информационная модель изучаемой местности, воспринимаемая как единое целое. Однако при целевом дешифрировании исполнитель обычно сталкивается как с избыточной (лишней) информацией, присутствующей на снимке, так и с недостатком необходимой информации. Еще раз следует подчеркнуть, что дешифрирование аэрокос ми ческих снимков требует определенных знаний и навыков. Чем глубже профессиональные знания исполнителя о предмете исследова ния, тем точнее, полнее и достовернее информация, извлекаемая из снимка. Результаты визуального дешифрирования, которое является интеллектуальной деятельностью, граничащей с искусством, существенно зависят не только от свойств снимков, но и от опыта, эрудиции, способностей к осмыслению, а нередко и интуиции дешифровщика.

Технологические схемы дешифрирования. Дешифрирование снимков, как исследовательское, так и производственное, всегда выполняется целенаправленно. Географы изучают по снимкам геосистемы разных рангов, их компоненты, а также отдельные объек-

ты, явления и процессы, выполняя ландшафтное, геоморфологическое, гидрологическое, гляциологическое и другие виды дешифрирования.

Технология и организация работ по дешифрированию существенно зависят от его задач, территории, масштаба и вида снимков (фотографических или сканерных, тепловых, радиолокационных и др.), от использования одиночных снимков или их серий (многозональных, разновременных). Существуют различные орга- низационно-технологические схемы дешифрирования, но все они включают следующие этапы:

2) выявление набора объектов дешифрирования (составление предварительной легенды будущей схемы дешифрирования или карты);

3) подбор снимков для дешифрирования, преобразование снимков для повышения их выразительности, подготовка приборов и вспомогательных средств дешифрирования. Следует иметь в виду, что снимки, оптимальные для решения одной задачи, могут оказаться неэффективными для другой;

4) собственно дешифрирование аэрокосмических снимков и оценка его достоверности;

5) оформление результатов дешифрирования.

Центральным моментом любых работ является собственно дешифрирование аэрокосмических снимков. Тематическое дешифрирование можно выполнять по двум принципиальным логическим схемам. Первая схема предусматривает вначале распознавание объектов, а затем их графическое выделение; вторая схема - вначале графическое выделение на снимке участков с однотипным изображением, а затем их распознавание. Обе схемы завершаются этапом интерпретации, научного толкования результатов дешифрирования. Работая со снимками, особенно с космическими, дешифровщик широко привлекает дополнительный материал, обычно картографический, который служит для уточнения дешифровочных признаков и оценки результатов дешифрирования.

Первая схема оказывается универсальной для решения большинства задач; она получила широкое признание в практике визуального дешифрирования. Вторая схема весьма эффективна при дешифрировании относительно простых объектов по яркостным признакам, но имеет ограниченное применение. Обе эти схемы при компьютерном дешифрировании реализуются в технологиях классификации с обучением и без обучения.

Дешифровочные признаки. На аэрокосмическом снимке объекты отличаются один от другого по ряду дешифровочных (демаскирующих) признаков. Выделяют основные признаки, которые

принято делить на прямые (простые и сложные) икосвенные (цв. вкл. I, 5). Прямые простые дешифровочные признаки - форма, размер, тон (цвет) изображения и тень, а сложный (комплексный) признак, объединяющий выше названные признаки, - рисунок изображения. Косвенные признаки основаны на связях между объектами, на возможности выявления не видимых на снимке объектов по другим объектам, хорошо изобразившимся. Косвенными признаками служат также местоположение объекта, географическое соседство, следы воздействия объекта на окружение.

Каждому объекту присущи особенности, проявляющиеся в прямых и косвенных дешифровочных признаках, которые в общем не постоянны, а зависят от сезона, времени и спектральных диапазонов съемки, масштаба снимков и т.д. Наиболее разработанные для снимков видимого диапазона, эти признаки имеют свои особенности на тепловых и радиолокационных снимках. Так, тон изображения на снимках в видимом диапазоне зависит от яркости объектов, в тепловом инфракрасном - от их температуры, а в радиодиапазоне - от шероховатости поверхности, влагосодержания, геометрии освещения радиолучом. На тепловых инфракрасных снимках отсутствует такой дешифровочный признак, как тень, а на радиолокационных снимках использование структуры изображения равнинных районов осложняется наличием спекл-шумов. В зависимости от конкретных условий меняется относительная значимость дешифровочных признаков, да и сами признаки. Начинающий исполнитель больше работает с прямыми дешифровочными признаками; умелое использование косвенных признаков - свидетельство высокой квалификации дешифровщика.

При прямом (непосредственном) дешифрировании используются прямые признаки. Приведем их характеристики для снимков видимого диапазона.

Форма - результативный прямой признак при визуальном дешифрировании. Именно в форме контура заключается основная часть информации об объекте. Антропогенные объекты имеют геометрически правильную, стандартную форму - по прямоугольной форме выделяют сельскохозяйственные поля (цв. вкл. I, 5, а), по перекрещивающимся полосам опознают аэродромы. Объемная форма позволяет распознавать объекты стереоскопически.

Размер - признак, используемый главным образом при работе с крупномасштабными снимками. По размеру различают здания разного функционального назначения (цв. вкл. I, 5, б), разделяют поля зерновых и кормовых севооборотов. Оценку размеров в процессе дешифрирования обычно производят путем визуального сравнения с размером известного объекта. Имеют значение как абсолютные размеры, так и их соотношения.

Тон (степень почернения) изображения, определяемый яркостью объектаи спектральной зоной съемки, помогает разделить

основные типы поверхности: снег, открытый грунт, растительность. Пятно солнечного блика на снимке нередко указывает на водные объекты. Однако тон - не стабильный признак. Даже при одинаковом освещении один и тот же объект может изобразиться в разных частях снимка разным тоном, и наоборот. Значительно стабильнее соотношение тонов - тоновые контрасты. На многозональном снимке тон одного и того же объекта, воспроизводимого на серии зональных снимков, будет различным. Коррелируя с кривой спектральной яркости, он трансформируется в сложный прямой признак - спектральный образ объекта.

Цвет - более информативный и надежный признак, чем тон черно-белого снимка. По цвету хорошо выделяются водные объекты, леса, луга, распаханные поля (цв. вкл. I, 5,в). Используя снимки с целенаправленно искаженной цветопередачей, разделяют различные типы растительности, горных пород и т.д.

Тень можно отнести как к прямым, так и к косвенным дешифровочным признакам. На фотографических и сканерных снимках она подразделяется на собственную и падающую. Тень на детальных снимках отражает силуэт заснятого объекта и позволяет оценить его высоту (цв. вкл. I, 5, г). Поскольку тень всегда имеет относительный контраст, значительно больший, чем сам объект, то часто только падающая тень позволяет обнаружить на снимках малоразмерные в плане, но высокие объекты, например заводские трубы. В горных районах глубокие тени затрудняют дешифрирование. Тени существенно влияют на рисунок изображения.

Рисунок изображения - устойчивый комплексный дешифровочный признак, обеспечивающий безошибочное опознавание не только таких объектов, как сельскохозяйственные поля, населенные пункты, но и разных типов геосистем. Существуют несколько классификаций рисунков аэрокосмического изображения, в которых их подразделяют, используя термины с одним-двумя прилагательными: зернистые, мозаичные, радиально-струйчатые и т.д. Каждому природно-территориальному комплексу свойствен определенный рисунок на снимке, который отражает его морфологическую структуру (цв. вкл. I, 6). В рисунке изображения различаюттекстуру - форму рисункообразующих элементов иструктуру - пространственное расположение элементов текстуры. Иногда рисунок изображения характеризуют количественными показателями, что служит основой морфометрического дешифрирования.

При компьютерном дешифрировании обычно под текстурой цифрового изображения понимают пространственную изменчивость значений яркости пикселов, что частично объединяет содержание понятий текстуры и структуры, которые принято различать при визуальном дешифрировании.

Морфометрическое дешифрирование. Дешифровочный признак объектов - форма - при дешифрировании обычно определяется

визуально, но более точное разделение объектов по форме возможно на основе ее измерений. Кроме формы отдельных объектов определяют количественные статистические характеристики формы объектов массового распространения и их распределения - они также могут служить признаками определенного типа объектов.

Распознавание и изучение объектов, основанное на определении количественных показателей, характеризующих их форму, размеры, особенности пространственного распределения, рисунок изображения - его текстуру и структуру, называют морфометрическим дешифрированием. Способы определения морфометрических показателей, число которых в разных областях исследований измеряется десятками, варьируют от простейших визуаль- но-инструментальных измерений до компьютерной обработки снимков.

Морфометрическое дешифрирование применяется при работе со снимками широкого масштабного ряда - от крупномасштабных аэроснимков до обзорных космических снимков. Оно используется в различных тематических областях исследований. Например, при лесной таксации одну из важных задач оценки насаждений - определение бонитета древостоев (т. е. их качества, запасов древесины) - решают косвенно на основе анализа диаметра крон и сомкнутости полога по крупномасштабным аэрофотоснимкам; статистические показатели этих характеристик получают путем измерения по профилям на стереофотограмметрических приборах.

Другой вид морфометрического анализа снимков, применяемый при геолого-геоморфологических исследованиях, - анализ распределения элементов разломной тектоники (длина, направление, густота линеаментов). Получаемые по результатам дешифрирования линеаментов розы - диаграммы их распределения служат основой для выделения районов с разным строением фундамента, имеющих различные перспективы для поиска месторождений полезных ископаемых. Для такого анализа снимков широко используются программные средства компьютерной обработки. Близкая задача - районирование территории по интенсивности эрозионного расчленения, например по густоте овражно-балоч- ной сети. Выделение по снимкам районов с разной густотой и глубиной расчленения, углами наклона и экспозицией склонов на основе стереомодели и цифровой модели, создаваемой по снимкам, теперь также обеспечивается компьютерными программами. Более сложно морфометрическое дешифрирование по рисунку изображения, применяемое в ландшафтных исследованиях, поскольку характеристики рисунка труднее формализовать, выразить количественно. Тем не менее изучаются количественные характеристики ландшафтных рисунков для разработки на их основе алгоритмов ландшафтного морфометрического компьютерного дешифрирования.

Индикационное дешифрирование. В отличие от прямого при косвенном дешифрировании, которое основано на объективно существующей в природе взаимосвязи и взаимообусловленности между объектами и явлениями, дешифровщик определяет не сам объект, который может и не изобразиться на снимке, а его указатель, индикатор. В качестве индикатора наиболее часто выступают растительный покров, а также рельеф и гидрография. Косвенные признаки лежат в основе ландшафтного метода дешифрирования, базирующегося на многосторонних связях между отдельными компонентами ландшафта, между дешифрируемым объектом и всем природным комплексом. Обычно с уменьшением масштаба снимков роль косвенных дешифровочных признаков возрастает.

На цв. вкл. I, 5 приведены примеры объектов, дешифрируемых по косвенным признакам. Пятна вымокания почв на полях свидетельствуют о развитии просадочного микрорельефа и близком уровне залегания грунтовых вод. Петли и складки поверхностных морен на леднике говорят о том, что это пульсирующий ледник и ожидается его подвижка.

Косвенное дешифрирование с использованием индикаторов называют индикационным дешифрированием, при котором по наблюдаемым «физиономичным» компонентам ландшафта выявляются компоненты или процессы, менее доступные для наблюдения. Географическую основу такого дешифрирования составляет индикационное учение (индикационное ландшафтоведение). Особенно большую роль индикационное дешифрирование играет при работе с космическими снимками, когда прямые признаки теряют свое значение из-за сильной генерализованное™ изображения. На космических снимках равнинных районов в первую очередь отображается внешний, растительный покров земной поверхности, благодаря которому проявляется микрорельеф; по растительности можно судить также о почвах и грунтах. При индикационном дешифрировании составляют так называемыеиндикационные таблицы, где для каждого типа или состояния индикатора указан соответствующий ему вид индицируемого объекта. Такая методика особенно тщательно отработана для гидрогеологического дешифрирования, когда по распространению растительности удается определить не только наличие, но и глубину залегания, и минерализацию грунтовых вод.

В качестве индикаторов могут выступать объекты, связи которых с исследуемым явлением на первый взгляд не очевидны. Так, неоднокрашо отмечалось образование линейных гряд кучевых облаков над крупными тектоническими разломами. Полевые геофизические исследования показали, что по таким разломам поднимаются дополнительные потоки тепла, что и объясняет образование облачности, которая, таким образом, может выступать в роли индикатора разломов.

При индикационном дешифрировании возможен переход от пространственных характеристик к временным. На основе выявления пространственно-временных рядов по индикационным признакам можно установить относительную давность протекания процесса или стадию его развития. Различные формы аласов на

Рис. 3.9. Трассеры движения:

а - срединные морены на поверхности ледника; б - песчаные гряды в пустыне, вытянутые по направлению преобладающих ветров; в - потоки вод разной мутности, выносимые рекой в море;г - фитопланктон на поверхности моря, визу-

ализирующий грибовидное течение

космических снимках в зоне вечной мерзлоты, их соотношение с термокарстовыми озерами индицируют стадии развития мерзлотных термокарстовых процессов, позволяя разделить молодой, зрелый, дряхлый термокарстовый рельеф.

Индикаторами движения водных масс в океане, приповерхностных ветров, льда ледников часто служат массовые объекты (трассеры), в совокупности визуализирующие направление и характер движения (рис. 3.9). Их роль могут выполнять битые льды, взвеси, фитопланктон, трассирующие движение вод в море, срединные морены, рисунок трещин или слоистости на поверхности горного ледника. Движение вод хорошо визуализируется температурными контрастами водной поверхности - именно по тепловым инфракрасным снимкам выявлена вихревая структура Мирового океана. Эоловые формы рельефа песчаных массивов и заструги на заснеженной поверхности покровных ледников указывают на преобладающее направление приземных ветровых потоков. Выявляются не только направление, но и некоторые количественные характеристики движения, его скорость. Например, дуги огив на горном леднике, возникающие под ледопадом, перемещаясь вниз вместе со льдом, вытягиваются по оси ледника, указывая на более высокую скорость в средней части по сравнению со скоростью движения льда у бортов ледника, что свидетельствует о ламинарном, а не глыбовом типе движения льда.

Дешифрирование многозональных снимков. Многозональный аэрокосмический снимок состоит обычно из 4-6 снимков, полученных в относительно узких спектральных зонах. К этому виду снимков можно также отнести радиолокационные снимки, получаемые как при регистрации отраженных радиоволн разной длины, так и при разной их поляризации. Работа с серией зональных снимков сложнее, чем с одиночным снимком, и дешифрирование многозональных снимков требует использования особых методических подходов. Наиболее универсальный прием - синтезирование цветного изображения, включая выбор варианта цветового синтеза, оптимального для решения конкретной задачи дешифрирования. Дополнительные результаты может дать также работа с серией ахроматических (черно-белых) зональных снимков. При этом используются два основных методических приема - сопоставительное и последовательное дешифрирование.

Сопоставительное дешифрирование серии зональных снимков основано на использовании спектральных образов изобразившихся на снимке объектов. Спектральный образ объекта на фотографическом снимке определяется визуально по тону его изображения на серии зональных черно-белых снимков; тон оценивается по стандартизованной шкале в единицах оптической плотности. По полученным данным строится кривая спектрального образа (рис. 3.10), отражающая изменение оптической плотности изоб-

Рис. 3.10. Кривые спектрального образа основных лесообразующих пород и других объектов, полученные по серии фотоотпечатков зональных снимков МКФ-6/ Союз-22 (вертикальные линии на графиках со-

ответствуют съемочным зонам):

1 - песок; 2 - луга (аласы); 3 - сосна;4 - лиственница; 5 - береза, ива,

тополь; 6 - ель; 7 - гарь;8 - вода

ражения на снимках в разных спектральных зонах. При этом откладываемые по оси ординат значения оптической плотности отпечатков D, в отличие от принятого, вверх по оси убывают, чтобы кривая спектрального образа соответствовала кривой спектральной яркости. Некоторые коммерческие программы предусматривают автоматическое построение графиков спектральных образов по цифровым снимкам. Логическая схема сопоставительного дешифрирования многозональных снимков включает этапы:определение по снимкам спектрального образа объекта - сопоставление с известной спектральной отражательной способностью - опознавание объекта.

При дешифрировании контуров на всей площади снимка спектральный образ с успехом используется и для определения границ распространения дешифрируемых объектов, что осуществляется приемами сопоставительного дешифрирования. Поясним их. На каждом из зональных снимков по тону изображения разделяются определенные совокупности объектов, причем на снимках в различных зонах эти совокупности разные. Например, в приведенном на рис. 3.11 примере на снимке в красной зоне (К) темным тоном выделяются совместно сосновые, еловые леса и гари, а в ближней инфракрасной (ИК) - еловые леса и гари. Сопостав-! ление зональных снимков позволяет разделить эти совокупности и выделить индивидуальные объекты, в данном случае - сосновые леса. Такое сопоставление может быть реализовано совмещением («вычитанием») схем дешифрирования зональных снимков/ на каждой из которых выделены разные совокупности объектов/ или получением по зональным снимкам разностных изображений. Последовательность операций вычитания зональных изображений или схем их дешифрирования может быть записана в виде формул дешифрирования (см. рис. 3.11). Сопоставительное дешифрирование наиболее применимо при изучении растительных объектов, в первую очередь лесов и сельскохозяйственных культур.

К - ИК либо ИК - К

Лиственничные леса (Л) Сосновые леса (С)

Еловые леса и гари (Е + Г) Аласы

Л = (Л + С)ик - С = (Л + С)ик - [(С + Е + Г)к - (Е + Г)«]

Рис. 3.11. Сопоставительное дешифрирование многозональных снимков МКФ-6/ Союз-22 для разделения по породному составу лесов среднетаежной зоны (Центрально-Якутская равнина, среднее течение р. Вилюй)

Последовательное дешифрирование основано на том, что на снимках в разных спектральных зонах оптимально отображаются разные объекты. Например, на снимках мелководий в связи с различным проникновением лучей разных спектральных зон (К, О, 3) в водную среду находят отображение объекты, расположенные на разной глубине, и дешифрирование серии многозональных снимков позволяет выполнять разноглубинный анализ (рис. 3.12).

Рис. 3.12. Последовательное дешифрирование многозональных снимков

МКФ-в/Союз-22 для разноглубин-

ного анализа форм донного рельефа в мелководной северо-восточной части Каспийского моря:

1 - гребни подводных грив; 2 - верхние части склонов; 3 - нижние части склонов;4 - выположенные межгрив-

ные понижения; 5 - межгривные ложбины

При последовательном дешифрировании многозональных снимков используется также тот факт, что темные на более светлом фоне контуры растительности в красной зоне благодаря повышению яркости ее изображения в ближней инфракрасной зоне как бы «исчезают» со снимка, не мешая восприятию крупных черт тектонического строения и рельефа. Это открывает возможность, например, при геоморфологических исследованиях дешифрировать по разным зональным снимкам формы рельефа разного генезиса - эндогенного по снимкам в ближней инфракрасной зоне и экзогенного - в красной. Последовательное дешифрирование предусматривает технологически сравнительно простые операции поэтапного суммирования результатов.

Дешифрирование разновременных снимков. Разновременные снимки обеспечивают качественное изучение изменений исследуемых объектов и косвенное дешифрирование объектов по их динамическим признакам.

Исследования динамики. Процесс извлечения динамической информации со снимков включает выявление изменений, их графическое отображение и содержательную интерпретацию. Для выявления изменений по разновременным снимкам их нужно сопоставить между собой, что осуществляется путем поочередного (раздельного) или одновременного (совместного) наблюдения. Технически визуальное сопоставление разновременных снимков осуществляется наиболее просто их поочередным наблюдением. Очень старый способ «миганий» (фликер-способ) позволяет, например, достаточно просто обнаружить вновь появившийся отдельный объект быстрым поочередным рассматриванием двух разновременных снимков. Из серии снимков изменяющегося объекта может быть смонтирована иллюстративная кинограмма. Так, если получаемые через 0,5 ч с геостационарных спутников в одном и том же ракурсе снимки Земли смонтировать в киноленту-«кольцовку» или анимационный файл, то возможно многократно воспроизвести на экране суточное развитие облачности.

Для выявления небольших изменений оказывается более эффективным не поочередное, а совместное наблюдение разновременных снимков, для чего используются специальные приемы: совмещение изображений (монокулярное и бинокулярное); синтезирование разностного или суммарного (обычно цветного) изображения; стереоскопические наблюдения.

При монокулярном наблюдении снимки, приведенные к одному масштабу и проекции и изготовленные на прозрачной основе, совмещают наложением один на другой и рассматривают на просвет. При компьютерном дешифрировании снимков для совместного просмотра изображений целесообразно использовать программы, обеспечивающие восприятие совмещаемых изображений как

полупрозрачных или «открывающие» участки одного изображения на фоне другого.

Бинокулярное наблюдение, когда каждый из двух разновременных снимков рассматривается одним глазом, наиболее удобно осуществлять с помощью стереоскопа, в котором каналы наблюдения имеют независимую регулировку увеличения и яркости изображения. Бинокулярные наблюдения дают хороший эффект при обнаружении изменений четких объектов на относительно однородном фоне, например изменений русла реки.

По разновременным черно-белым снимкам возможно получить исинтезированное цветное изображение. Правда, как показывает опыт, интерпретация такого цветного изображения затруднена. Этот технический прием результативен лишь при изучении динамики простых по структуре объектов, имеющих резкие границы.

При исследовании изменений вследствие движения, перемещения объектов наилучшие результаты дает стереоскопическое наблюдение разновременных снимков (псевдостереоэффект). Здесь можно оценить характер движения, стереоскопически воспринять границы движущегося объекта, например границы активного оползня на горном склоне.

В отличие от поочередного приемы совместного наблюдения разновременных снимков требуют предварительных коррекций - приведения их к одному масштабу, трансформирования, причем эти процедуры часто более сложны и трудоемки, чем само определение изменений.

Дешифрирование по динамическим признакам. Закономерности временных изменений географических объектов, для которых характерна смена состояний во времени, могут служить их дешифровочными признаками, которые, как уже отмечалось, называют временным образом объекта. Например, тепловые снимки, полученные в разное время суток, позволяют распознавать объекты, имеющие специфический суточный ход температуры. При работе с разновременными снимками используются те же приемы, что и при дешифрировании многозональных снимков. Они основаны на последовательном и сопоставительном анализе и синтезе и являются общими для работы с любыми сериями снимков.

Полевое и камеральное дешифрирование. При полевом дешифрировании опознавание объектов производится непосредственно на местности путем сличения объекта в натуре с его изображением на снимке. Результаты дешифрирования наносятся на снимок или прикрепленную к нему прозрачную накладку. Это самый достоверный вид дешифрирования, но и самый дорогой. Полевое дешифрирование может выполняться не только на фотоотпечатках, но и на экранных (цифровых) снимках. В последнем случае обычно используется полевой микрокомпьютер с чувствительным эк- раном-планшетом, а также специальное программное обеспече-

ние. Результаты дешифрирования отмечаются в поле на экране с помощью компьютерной ручки, закрепляются набором условных знаков и записываются в текстовой или табличной форме в несколько слоев памяти микрокомпьютера. Возможен ввод дополнительной звуковой информации об объекте дешифрирования. При полевом дешифрировании нередко приходится наносить на снимки недостающие объекты. Досъемка производится глазомерным или инструментальным способом. Для этого применяются приемники спутникового позиционирования, позволяющие определять в поле координаты объектов, отсутствующих на снимке, практически с любой необходимой точностью. При дешифрировании снимков масштаба 1:25 ООО и мельче удобно использовать портативные спутниковые приемники, соединенные с микрокомпьютером в единый полевой комплект дешифровщика.

К разновидности полевого дешифрирования относится аэровизуальное дешифрирование, которое наиболее эффективно в тундре, пустыне. Высоту и скорость полета вертолета или легкого самолета выбирают в зависимости от масштаба снимков: они тем больше, чем мельче масштаб. Аэровизуальное дешифрирование результативно при работе с космическими снимками. Однако выполнение его непросто - исполнитель должен уметь быстро ориентироваться и распознавать объекты.

При камеральном дешифрировании, которое представляет собой основной и наиболее распространенный вид дешифрирования, объект распознается по прямым и косвенным дешифровочным признакам без выхода в поле и непосредственного сличения изображения с объектом. На практике обычно комбинируют оба вида дешифрирования. Рациональная схема их сочетания предусматривает предварительное камеральное, выборочное полевое и окончательное камеральное дешифрирование аэрокосмических снимков. Соотношение полевого и камерального дешифрирования зависит и от масштаба снимков. Аэроснимки крупного масштаба дешифрируют преимущественно в поле. При работе с космическими снимками, охватывающими значительные площади, возрастает роль камерального дешифрирования. Наземная полевая информация при работе с космическими снимками нередко заменяется картографической, получаемой по картам - топографическим, геологическим, почвенным, геоботаническим и др.

Эталонное дешифрирование. Камеральное дешифрирование основано на использованиидешифровочных эталонов , создаваемых в поле на типичные для данной территории ключевые участки. Таким образом, дешифровочные эталоны представляют собой снимки характерных участков с нанесенными на них результатами дешифрирования типичных объектов, сопровождаемые характеристикой дешифровочных признаков. Далее эталоны используются при камеральном дешифрировании, которое выполняется способом гео-

графической интерполяции иэкстраполяции , т. е. путем распространения выявленных дешифровочных признаков на участки между эталонами и за их пределами. Камеральное дешифрирование с использованием эталонов получило развитие при топографическом картографировании труднодоступных районов, когда в ряде организаций создавались фототеки эталонов. Картографической службой нашей страны были изданы альбомы образцов дешифрирования различных типов объектов на аэрофотоснимках. При тематическом дешифрировании космических снимков, в большинстве своем многозональных, такую обучающую роль выполняют подготовленные в МГУ им. М.В.Ломоносова научно-методиче- ские атласы «Дешифрирование многозональных аэрокосмических снимков», содержащие методические рекомендации и примеры результатов дешифрирования различных компонентов природной среды, социально-экономических объектов, последствий антропогенного воздействия на природу.

Подготовка снимков для визуального дешифрирования. Для географического дешифрирования редко используют оригинальные снимки. При дешифрировании аэрофотоснимков обычно применяют контактные отпечатки, а спутниковые снимки желательно дешифрировать «на просвет», используя диапозитивы на пленке, которые более полно передают мелкие и малоконтрастные детали космического изображения.

Преобразование снимков. Для более быстрого, простого и полного извлечения из снимка необходимой информации выполняют его преобразование, которое сводится к получению другого изображения с заданными свойствами. Оно направлено на выделение необходимой и удаление излишней информации. Следует подчеркнуть, что преобразование изображения не добавляет новой информации, а только приводит ее к виду, удобному для дальнейшего использования.

Преобразование снимков можно выполнить фотографическими, оптическими и компьютерными способами или при их сочетании. Фотографические способы основаны на различных режимах фотохимической обработки; оптические - на преобразовании светового потока, пропущенного через снимок. Наиболее распространены компьютерные преобразования снимков. Можно сказать, что в настоящее время альтернативы компьютерным преобразованиям не существует. Распространенные компьютерные преобразования снимков для визуального дешифрирования, такие, как компрессия-декомпрессия, преобразование контрастности, синтезирование цветных изображений, квантование и фильтрация, а также создание новых производных геоизображений, будут рассмотрены в разд. 3.2.

Увеличение снимков. При визуальном дешифрировании принято использовать технические средства, расширяющие возможности

глаза, например лупы с различным увеличением - от 2х до 10х. Полезна измерительная лупа со шкалой в поле зрения. Необходимость увеличения становится ясной из сравнения разрешающей способности снимков и глаза. Разрешающая способность глаза на расстоянии наилучшего зрения (250 мм) принимается равной 5 мм-1 . Для различия, например, всех деталей на космическом фотографическом снимке, имеющем разрешающую способность

100 мм-1 , его необходимо увеличить в ^ ^ = 20 раз. Только в этом

случае можно использовать всю информацию, заключенную в фотоснимке. Необходимо учитывать, что получить снимки с большим увеличением (более 10х) фотографическими или оптическими способами не просто: требуются фотоувеличители крупных размеров или очень высокая сложно осуществляемая освещенность оригиналов снимков.

Особенности наблюдения снимков на экране компьютера. Для восприятия снимков важны характеристики экрана дисплея: наилучшие результаты дешифрирования достигаются на экранах большого размера, воспроизводящих максимальное количество цветов и имеющих высокую частоту обновления изображения. Увеличение цифрового снимка на экране компьютера близко к оптимальному в тех случаях, когда одному пикселу экрана pix rf соответствует один пиксел снимка pix c . В этом случае увеличение v экранного снимка будет:

piXrf v = --

PIХс

Если известен размер пиксела на местности PIX (пространственное разрешение), то масштаб изображения снимка на экране дисплея равен:

1 = piх

Md PIX"

Например, цифровой космический снимок ТМ/Landsat с размером пиксела на местности PIX = 30 м будет воспроизведен на экране дисплея сpix d = 0,3 мм в масштабе 1:100 000. При необходимости рассмотрения мелких деталей экранный снимок с помощью компьютерной программы можно дополнительно увеличить в 2, 3, 4 раза и более; при этом один пиксел снимка изображается 4, 9, 16 пикселами экрана и более, но изображение принимает заметную для глаза «пиксельную» структуру. На практике наиболее распространено дополнительное увеличение 2 - Зх. Для одновременного просмотра на экране всего снимка в целом изображение приходится уменьшать. Однако в этом случае отображаются только каждые 2-е, 3-й, 4-е и т.д. строки и столбцы снимка и на нем неизбежны потери деталей и мелких объектов.

Время эффективной работы при дешифрировании экранных снимков короче, чем при визуальном дешифрировании отпечатков. Необходимо учитывать также текущие санитарные нормы работы на компьютере, регламентирующие, в частности, минимальное расстояние глаз дешифровщика от экрана (не менее 500 мм), длительность непрерывной работы, интенсивность электромагнитных полей, шума и т.д.

Приборы и вспомогательные средства. Часто в процессе визуального дешифрирования необходимо произвести несложные измерения и количественные оценки. Для этого применяют различного рода вспомогательные средства: палетки, шкалы и таблицы тонов, номограммы и т.д. (рис. 3.13). Для стереоскопического рассматривания снимков применяют стереоскопы различных конструкций. Лучшим прибором для камерального дешифрирования следует считать стереоскоп с двойной наблюдательной системой, обеспечивающей просмотр стереопары двумя дешифровщиками. Перенос результатов дешифрирования с отдельных снимков на общую картографическую основу обычно выполняют с помощью небольшого специального оптико-механического прибора.

Оформление результатов дешифрирования. Результаты визуального дешифрирования наиболее часто представляют в графической, текстовой и реже цифровой формах. Обычно в итоге дешифровочных работ получают снимок, на котором графически выделены и обозначены условными знаками изучаемые объекты. Закрепление результатов дешифрирования выполняют и на прозрачной накладке. При работе на компьютере результаты удобно представлять в виде принтерных отпечатков (твердых копий). По космическим снимкам создаются так называемые схемы дешифрирования, которые по своему содержанию представляют фрагменты тематических карт, составленных в масштабе и проекции снимка.

II1 -Г- 1

1г Г-Т-1-~1-г1-1-1-1

1 1 1 1--Г1-Г 1 1 - т

1 160 1 1

I|" 1 I 1I -1I -I 1-I 1-I 1-I 1-I 1-I 1-I 1-I 1-I -I! -|I -I-|I -| 1-1

^MiMyMiu^MiM^iipyrrpJl

Рис. 3.13. Простейшие измерительные принадлежности: а - измерительный клин; б - шкала кружков

Автоматизированное дешифрирование – интерпретация данных, находящихся в снимке, выполняемая электронно-вычислительной машиной. Данный метод используется благодаря таким факторам, как обработка огромного количества данных и развитие цифровых технологий, предлагающих изображение в формате, подходящим для автоматизированных технологий . Для дешифрирования снимков используется определенное программное обеспечение (ПО): ArcGIS, ENVI (см. рис.5), Панорама, SOCETSET и т.д.

Рис.5. Интерфейс программы ENVI 4.7.01

Несмотря на все плюсы использования ЭВМ и специализированных программ, постоянное развитие технологий, у автоматизированного процесса есть и проблемы: распознавание образов на машинной классификации с помощью узко формализованных дешифровочных признаков .

Для идентификации объектов их разбивают на классы с определенными свойствами, это процесс разделения пространства по участкам и классам объектов называется сегментацией. Из-за того, что объекты при съемке часто бывают закрытыми и с "шумами" (облака, дым, пыль и т.д.), то машинная сегментация носит вероятностный характер. Для повышения качества к спектральным признакам объектов (цвет, отражение, тон) добавляют информацию о форме, текстуре, расположению и взаимном расположении объектов .

Для машинной сегментации и классификации объектов существуют алгоритмы, разработанные на разных правилах классификации:

    с обучением (контролируемая классификация);

    без обучения (неконтролируемая классификация).

Алгоритм классификации без обучения может достаточно быстро сегментировать изображение, но с большим количеством ошибок. Контролируемой классификации необходимо указание участков-эталонов, в которых присутствуют объекты одного типа с классифицируемыми. Этот алгоритм требует больших затрат от ЭВМ и дает результат с большей точностью.

3.1. Автоматизированное дешифрирование с использованием комплекса envi 4.7.01

Для изучения методов дешифрирования и обработки космических снимков проведено дешифрирование снимка со спутника Landsat-8 на территорию Удмуртской Республики. Снимок получен с сайта Геологической службы США . На снимке отчетливо видны города Ижевск, также без искажений читаются Ижевский пруд, течение реки Кама от города Воткинск до города Сарапул. Дата съемки – 15.05.2013 и 10.05.2017. Процент покрытия снимка 2013 года облаками – 45% и верхняя часть снимка сложно дешифрируется (однако практически весь весенне-летний период съемок содержит высокое содержание облаков на снимке). Поэтому основная работа по анализу информации будет проходить с более актуальным снимком.

Процент покрытия снимка 2017 года облаками – 15% и правый верхний угол снимка не пригоден для обработки из-за группы облаков, закрывающих поверхность территории.

Система координат, принятая к использованию на снимке – UTM– универсальная поперечная проекция Меркатора, основанная на эллипсоиде WGS84.

Программный комплекс (ПК) ENVI – программный продукт, обеспечивающих полный цикл обработки оптико-электронных и радарных данных дистанционного зондирования Земли (ДЗЗ), а также их интеграции с данными геоинформационных систем (ГИС).

К преимуществам ENVI также относится интуитивно понятный графический интерфейс, позволяющий начинающему пользователю быстро освоить все необходимые алгоритмы обработки данных. Логические ниспадающие пункты меню облегчат нахождение функции, которая необходима в процессе анализа или обработки данных. Есть возможность упростить, перестроить, русифицировать или переименовать пункты меню ENVI или добавить новые функции. В версии 4.7 осуществлена интеграция продуктов ENVI и ArcGIS .

Для подготовки снимка к процессу дешифрирования необходимо его обработать и получить само спектральное изображение для анализа. Для получения изображения из серии снимков необходимо скомпоновать все каналы в единый поток/контейнер с помощью команды на панели управления Layerstacking (см.рис.6). После всех преобразований получаем многоканальный контейнер/изображение, с которым можно продолжать работу: фильтрация, привязка, неконтролируемая классификация, выявление динамики, векторизация. Все каналы изображения будут приведены к одному разрешению и к одной проекции. Для загрузки этой команды необходимо выбрать: BasicTools>LayerStackingили Map>LayerStacking .

Рис.6. Интерфейс программы ENVI - компоновка каналов в Layerstacking

Визуализируя мультиспектральное изображение, необходимо в меню программного комплекса ENVI выбрать следующие команды: File>OpenExternalFile>QuickBird. В новом окне AvailableBandsList (см. рис.7) для синтеза изображения в строчках RGB мы выбираем красный, зеленый и синий каналы соответственно - последовательность каналов "4,3,2". В итоге получаем изображение, привычное человеческому глазу (см.рис.8.) и на экране появляется 3 новых окна - Image, scroll, zoom .

Рис.7. Окно AvailableBandsList

Рис.8. Синтезированное изображение снимка 15.05.2013 г - последовательность каналов "4,3,2".

С недавнего времени применительно к снимку Landsat-8 в ENVI чаще используют последовательность каналов "3,2,1" для получения изображения в близких к естественным цветам . Для сравнения двух последовательностей проведем процедуру фильтрации (В окне Image есть вкладка Filter), выводя оба результата на экран (см. рис. 9).

Рис.9. Фильтрация снимка в последовательности "3,2,1"

Благодаря этой команде можно улучшить качество снимка: в данном случае, увеличилась прозрачность облаков, появились четкие контуры разделения поверхностей (акватории, лес, антропогенные территории). Фактически Filter помогает корректировать "шумы" снимка.

Неконтролируемая классификация выполняется по принципу распределения пикселей по классам - сходным яркостным характеристикам. В ENVI существует два алгоритма работы с неконтролируемой классификацией: K-means и IsoData. Команда K-means на порядок сложнее: она требует определенных навыков в подборке настроек изображения и выводов результатов. Команда IsoData проще и требует лишь изменения указанных в системе параметров (см.рис.10): главная панель, команда Classification - Unsupervised - K-means/ IsoData (см. рис.11) .

Рис.10. Окно настройки параметров IsoDataв ENVI

В полученном примере неконтролируемой классификации преобладают инфракрасный и синий каналы, дающие подробную информацию о гидросети на территории снимка.

Рис.11. Неконтролируемая классификация

Через комплекс ENVIлегко и удобно проводить регистрацию изображения с использованием геопривязанного изображения, в последующем полученное изображение используется в MapInfo. Для этого в главном меню выбираем Map>Registration>SelectGCPs: Image to Map . Результат сразу можно вывести в MapInfo для сравнения, сохранив в специальном формате (см.рис.12).

Рис.12. Геопривязка снимка для использования в MapInfo

Векторизация снимка в ENVI происходит с тем же набором данных, что и привязка снимка из ENVI в MapInfo, через команду векторизации: необходимо задать проекцию, эллипсоид, номер зоны (см.рис.13).

Динамика изменений на выбранной территории отслеживается с использованием разновременных многозональных снимков (за 2013 и 2017 гг.). Динамику можно отследить 3 методами:

    метод мигания;

    метод "сэндвича" - совмещения слоев в MapInfo;

    использование карты изменений.

Рис.13. Векторизация снимка

Метод мигания создает два разных окна с 2-мя снимками с помощью команды NewDisplay в окне выбора слоев для показа. Оба снимка связываются при помощи команды LinkDisplaysв окне Image и на экране можно видеть оба снимка, которые двигаются одинаково в разные моменты времени, отображающие одну и ту же местность (см.рис.14). По клику компьютерной мыши дисплеи со снимками будут меняться местами - мигать, что и позволит обнаружить изменения (динамику).

Рис.14. Выявление динамики - метод мигания

Метод "сэндвича" заключается в единовременном совмещении обоих снимков, предварительно сохраненных в формате Jpeg2000/.jp2 с помощью команды File - Save Images. Поочередно оба изображения необходимо открыть в Mapinfo в единой проекции (универсальная поперечная проекция Меркатора). Для комфортного сравнения у верхнего слоя/снимка изменяют прозрачность - 50% и проводят визуальный поиск изменений с последующим выделением ареалов динамики (см.рис.15).

Если 2 полученных снимка имеют геопривязку, разделение по слоям и формат geotiff/tiff, то имеет место быть современный актуальный метод - карта изменений. На обоих снимках необходимо выбрать один и тот же тип слоя, к примеру, третий - зеленый. В итоге преобразований получается карта с большим количество шумов, требующая настройки фильтров.

Рис.15. Выявление динамики - способ "сэндвича"

Если сравнивать все три метода, то автору работы более импонирует метод "сэндвича", т.к. метод мигания дает сильную нагрузку зрению и вызывает преждевременную физиологическую усталость глаз. Создание же карты изменений не всегда эффективно, т.к. полностью шумы убрать невозможно.

Дешифрирование космических снимков - распознавание изучаемых природных комплексов и экологических процессов или их индикаторов по рисунку фотоизображения (тону, цвету, структуре), его размерам и сочетанию с другими объектами (текстура фотоизображения). Эти внешние характеристики присущи только тем физиономическим компонентам ландшафтов, которые имеют непосредственное отражение на снимке.

В связи с этим только незначительное число природных компонентов может быть отдешифрировано по прямым признакам - формы рельефа, растительный покров, иногда поверхностные отложения.

Дешифрирование включает обнаружение, распознавание, интерпретацию, а также определение качественных и количественных характеристик объектов и отображение результатов в графической (картографической), цифровой или текстовой формах.

Различают дешифрирование снимков общегеографическое (топографическое), ландшафтное и тематическое (отраслевое) геологическое, почвенное, лесное, гляциологическое, сельскохозяйственное и др.

Основные этапы дешифрирования космических снимков: привязка; обнаружение; опознавание; интерпретация; экстраполяция.

Привязка снимка - это определение пространственного положения границ снимка. Заключается в точном географическом установлении территории, изображенной на снимке. Осуществляется при помощи топографических карт, масштаб которых соответствует масштабу снимка. Характерными контурами привязки снимка служат береговые линии водоемов, рисунок гидрографической сети, формы макрорельефа (горные массивы, крупные впадины).

Обнаружение состоит в сопоставлении различных рисунков фотоизображения. По признаками изображения (тон, цвет, структура рисунка) осуществляется обособление фотофизиономичных компонентов ландшафтов.

Опознавание, или идентификация объектов дешифрирования, - включает анализ структуры и текстуры фотоизображения, по которым опознаются фотофизиономические компоненты ландшафтов, техногенные сооружения, характер использования земель, техногенная нарушенность физиономических компонентов. На этом этапе устанавливают прямые дешифровочные признаки фотофизиономичных компонентов.

Интерпретация заключается в классификации опознанных объектов по определенному принципу (в зависимости от тематической направленности дешифрирования). Так, при ландшафтном дешифрировании интерпретируются физиономические компоненты геосистем, а опознанные техногенные объекты служат только для правильной ориентировки. При дешифрировании хозяйственного использования внимание обращается на опознанные объекты использования земель - поля, дороги, населенные пункты и т. д. Интерпретация деципиентных (скрытых) компонентов ландшафтов или их техногенных изменений производится ландшафтно-индикационным методом. Полная и достоверная интерпретация снимков возможна только на основании комплексного использования прямых и косвенных дешифровочных признаков. Процесс интерпретации сопровождается рисовкой контуров, т. е. созданием по отдельным снимкам схем дешифрирования.

Экстраполяция - включает выявление аналогичных объектов по всей территории исследований и составление предварительного макета карты. Для этого на фотоплан или фотосхему наносятся все данные, полученные при дешифрировании отдельных снимков. В ходе экстраполяции идентифицируют аналогичные объекты, явления и процессы на других участках; устанавливают ландшафты-аналоги.

Дешифрирование выполняется по принципу от общего к частному. Всякий снимок - прежде всего информационная модель местности, воспринимаемая исследователем как единое целое, а объекты анализируются в развитии и неразрывной связи с окружающей их средой.

Различают следующие виды дешифрирования.

Тематическое дешифрирование выполняют по двум логическим схемам. Первая предусматривает вначале распознавание объектов, а затем их графическое выделение, вторая - вначале графическое выделение на снимке однотипных участков, а затем их распознавание. Обе схемы завершаются интерпретацией - научным толкованием результатов дешифрирования. При компьютерном дешифрировании эти схемы реализуются в технологиях кластеризации и классификации с обучением.

Объекты на снимках различают по дешифровочным признакам, которые делят на прямые и косвенные . К прямым относят форму, размер, цвет, тон и тень, а также сложный объединяющий признак - рисунок изображения. Косвенными признаками служат местоположение объекта, его географическое соседство, следы взаимодействия с окружением.

При косвенном дешифрировании , основанном на объективно существующих связях и взаимообусловленности объектов и явлений, дешифровщик выявляет на снимке не сам объект, который может и не изобразиться, а его индикатор. Такое косвенное дешифрирование называют индикационным, географическую основу которого составляет индикационное ландшафтоведение. Его роль особенно велика, когда прямые признаки теряют значение из-за сильной генерализованности изображения. При этом составляют особые индикационные таблицы, где для каждого типа или состояния индикатора указан соответствующий ему вид индицируемого объекта.

Индикационное дешифрирование позволяет от пространственных характеристик переходить к временным. На основе пространственно-временных рядов можно установить относительную давность протекания процесса или стадию его развития. Например, по гигантским речным меандрам, оставленным в долинах многих сибирских рек, их размерам и форме оценивают расходы воды в прошлом и происходившие изменения.

Индикаторами движения водных масс в океане часто служат битые льды, взвеси и др. Движение вод хорошо визуализируют и температурные контрасты водной поверхности - именно по тепловым инфракрасным снимкам выявлена вихревая структура Мирового океана.

Дешифрирование многозональных снимков. Работа с серией из четырех-шести зональных снимков сложнее, чем с одиночным снимком, и их дешифрирование требует некоторых особых методических подходов. Различают сопоставительное и последовательное дешифрирование.

Сопоставительное дешифрирование состоит в определении по снимкам спектрального образа, сравнении его с известной спектральной отражательной способностью и опознавании объекта. Вначале на зональных снимках выявляют совокупности объектов, различные в разных зонах, а затем, сопоставляя их (вычитая зональные схемы дешифрирования), выделяют в этих совокупностях индивидуальные объекты. Наиболее эффективно такое дешифрирование для растительных объектов.

Последовательное дешифрирование основано на том, что зональные снимки оптимально отображают разные объекты. Например, на снимках мелководий вследствие неодинакового проникновения лучей разных спектральных диапазонов в водную среду видны объекты, расположенные на разных глубинах, и серия снимков позволяет выполнить послойный анализ и затем поэтапно суммировать результаты.

Дешифрирование разновременных снимков обеспечивает изучение изменений объектов и их динамики, а также косвенное дешифрирование изменчивых объектов по их динамическим признакам. Например, сельскохозяйственные культуры опознают по смене изображения в течение вегетационного периода с учетом сельскохозяйственного календаря.