Датчик дыма на 393 схема. Как устроена и работает пожарная сигнализация. Конструкция пожарных систем

Быть готовым к пожару невозможно, он всегда внезапен и малоконтролируем. Но минимизировать риск его появления, значительно сократив предсказуемый материальный ущерб, можно. Для этого специалистами изобретены пожарные извещатели, которые в настоящее время являются единственным средством, способным обнаружить пожар без человека. Одним из таких в своем роде является, тепловой пожарный датчик или извещатель, кратко — ТПИ.

Само название — тепловой — объясняет принцип действия прибора. Он содержит один или несколько преобразователей — чувствительных элементов, которые, воспринимая температурное повышение среды, ведут к срабатыванию громкого опознавательного сигнала через звуковой оповещатель.

Существует еще один вид извещателя – пожарный дымовой. Он срабатывает на аэрозольные продукты горения, проще говоря, дым, а точнее, его цвет. Плюс противопожарных датчиков дыма в том, что он разрешен в административно-бытовых строениях, в отличие от теплового извещателя, а минус – поднимет всех на ноги не из-за пожара, а, например, большого скопления пыли или пара. Причем, если говорить строго, называть его датчиком неправильно, потому что он лишь составная часть извещателя.

Основные типы

По виду основной из составляющих ТПИ — чувствительного элемента или контроллера, различают четыре основных его типа:

  • Контактный ТПИ . При изменении температурного режима установленный контакт или электрическая цепь размыкается, специальный шлейф рвется и служит причиной срабатывания звукового сигнала. Самые простые, как правило, отечественные модели, представляют собой замкнутый контакт из двух проводников, упакованный в пластмассовый контейнер. Более сложные имеют термочувствительный полупроводник с отрицательным сопротивлением. Если температурная отметка окружающей среды возрастет, сопротивление упадет, и по цепи пойдет контролируемый ток. Как только он достигнет определенного показателя, оповещатель сработает.
  • В электронный сенсор вмонтированы сенсоры, которые находятся внутри кабеля, как только температура достигает определенного порога, сопротивление электротока в кабеле меняется, что передается в управление контрольного устройства. Высокочувствителен. Принцип устройства достаточно сложный.
  • Оптический извещатель работает на основе оптико-волоконного кабеля. От повышения температуры изменяется оптическая проводимость, что ведет к звуковому оповещению.
  • Металлическая трубка с газом, герметично заполненная, необходима для механического ТПИ . Воздействие температуры на любой участок трубки приведет к изменению ее внутреннего давления и срабатыванию сигнала. Признан устаревшим.
  • Другие типы . Полупроводниковые имеют специальное покрытие с отрицательным коэффициентом температуры, электромеханические состоят из проводов под механическим напряжением, покрытых термочувствительным веществом.

Виды пожарных извещателей

Пожарные тепловые реагируют на разные параметры распространения огня. Отсюда и классификация на виды.

В максимальный противопожарный датчик задан порог абсолютной величины:

  • давление,
  • температура, — как только показатель окружающей среды его достигнет, люди будут оповещены.

Массово выпускают отечественные устройства с температурой срабатывания 70-72 градусов. Они же являются по причине своей финансовой доступности весьма популярными.

Для дифференциального датчика пожарной сигнализации важна скорость изменения признака, который стоит у него на контроле.

Такие устройства признаны более эффективными, чем максимальные ТПИ —

  • дают тревогу раньше,
  • устойчивы в работе, но за счет двух установленных на расстоянии элементов, они выше по цене.

Максимально-дифференциальные приборы объединяют оба параметра.

Собираясь за покупкой данного типа пожарных устройств, учтите, что их температурный порог минимум на 20 градусов должен быть выше допущенной температуры на объекте.

Таким образом, современные системы пожарной сигнализации технические специалисты делят на дискретные (по порогу) – они рассмотрены выше — и аналоговые. Аналоговые тепловые пожарные сенсоры в свою очередь подразделяются на неадресные и адресные. Последние передают не только информацию о возгорании, но и код своего адреса.

И дискретные, и аналоговые измеряют характеристики факторов пожара, принципиальное отличие в способе обработки сигнала.

У аналоговых он сложнее и его суть в специальных систематических алгоритмах.

  • Адресно-аналоговые тепловые устройства регулярно собирают информацию о состоянии помещения. Они могут выдать данные, на которые запрограммированы для сборы, в режиме реального времени.
  • Взрывозащищенные тепловые пожарные извещатели нужны там, где риск появления пожар высок, и в воздухе могут присутствовать взрывоопасные вещества. Они словно бронированы, так как расположены на различных силовых агрегатах, нефтепроводах и т.д. Различаются степенью защиты, количеством сенсоров и разными установленными температурными порогами.
  • У линейных тепловых извещателей применяется кабель с теплочувствительным полимером – термокабель – он фиксирует любые изменения по всей своей протяженности как единый противопожарный датчик. Используется там, где потолок большого размера, например, крытый стадион. Крепить можно кроме потолка еще и на стены.
  • Многоточечные тепловые устройства противопоставлены по своей сути линейным. Они входят в единую систему, которая контролирует несколько зон и объединена в электрическую цепь. Поступающие от датчиков противопожарных сигналы обрабатываются в едином блоке.

Эксплуатация и установка

Схема подключения тепловых датчиков дается в инструкции по эксплуатации, однако, могут возникнуть трудности.

Требования ГОСТ Р 53325-2009, пункт 4.2.5.1, обязывают снабжать извещатели тепловые встроенным или выносным оптическим индикатором.

При расчете номиналов резисторов дополнительных берите во внимание электрические составляющие подключаемых светодиодных индикаторов.

Смотрите в паспорте прибора на падение напряжения типовое и максимальное, которые указывают на предел параметров. Для удобности монтажа лучше брать светодиодные неполярные индикаторы.

Замкнутые нормально контакты тепловых устройства соединяются с шлейфом так же, как и у дымовых. Отличие в том, что в дежурном состоянии у тепловых датчиков электроток не потребляется, а в активном режиме его меньше, чем у дымовых.

У тепловых датчиков пожарной сигнализации в схеме подключения есть следующие сопротивления:

  • Rбал.,
  • Rок.,
  • Rдоп.

Изучаем руководство по эксплуатации прибора контроля и учитываем номиналы резисторов.

Rбал. аналогичен Rдоп., но в комплекте контрольного прибора его нет, придется купить дополнительно.

В обычном режиме датчики коротко замкнуты, а значит, сопротивление Rбал возникнет только в том случае, если один или двое из приборов сработают. И тогда сможет сформироваться сигнал “Тревога”.

Для контроллеров “Мираж ” есть нижеследующая схема. Если сработает один, то поступит сигнал “Внимание”, если второй — последует команда “Пожар”.

Обозначение теплового извещателя на схеме, а также других составляющих следующее:

  • ШС – шлейф сигнализации,
  • ИП — извещатель пожарный тепловой,
  • ИПР – извещатель пожарный ручной,
  • ДИП – дымовой извещатель пожарный.

Условное графическое обозначение автоматического теплового извещателя по требованиям нормативной документации — .

Нормы и особенности установки/подключения тепловых датчиков регулируются сводом правил системы противопожарной защиты 5.13.130.2009 с последними изменениями от 20.06.2011 г.

Из таблицы 13.5.становится известным расстояние между тепловыми точечными устройствами, а также между ними и стеной (не забудьте об исключениях, указанных в пункте 13.3.7).

Источник: СП5.13.130.2009.

Нетрудно догадаться, что от высоты помещения зависит охватываемая датчиком площадь. При этом многие устанавливают по два устройства в каждом помещении на случай выхода из работы одного датчика.

Расстояние от одного к другому должно ограничиваться половиной рекомендуемого. Но это действует при точечных неадресных датчиках. Адресно-аналоговые в дублировании не нуждаются, так как у них совершенно иной принцип работы.

  • При расположении сенсоров в помещениях нужно учитывать особенности распространения продуктов горения в них.
  • Неэффективно устанавливать тепловые датчики в “мертвых” зонах, там, куда горячий воздух доберется в последнюю очередь, и противопожарный прибор сработает слишком поздно.
  • Так, прокладывая термокабель линейного теплового извещателя, не надо этого делать в 15-20 см от углов по потолку и стенах.
  • Не стоит забывать и о вытяжках, кондиционерах, — расположите прибор не менее чем на метр от них.

Физические законы рождают принципы, которые лежат в основе установки пожарных извещателей:

  • плоский потолок защищается по окружности, лежащей в горизонтальной поверхности;
  • нужно учитывать расстояние от перекрытий помещения.

Неисправности и способы их устранения

О них, прежде всего, читаем в руководстве по эксплуатации в специально выделенном разделе. В описании указано, что может не работать и какой метод поможет устранить проблему.

Классическими причинами является непрофессиональный монтаж и заводской брак. Выявленный брак ведет к гарантийному сроку, который составляет в среднем от 18 до 36 месяцев, но бывает и 12 месяцев.

  • Опытные инженеры также указывают на ложную пожарную тревогу в случае ремонта, когда пыль попадает в прибор, и он срабатывает.
  • Порой насекомые также служат поводом неоправданной тревоги. Помогает протирка спиртом и продувание.
  • Шлейфы могут периодически оповещать о пожаре при скрученных проводах, где контакт нестабилен.
  • Электромагнитные помехи от приборов также никто не отменял, поэтому их необходимо брать во внимание. Сезонные изменения, акустические колебания и агрессивная окружающая среда также влияют на неисправности.
  • Ложные тревоги зачастую свидетельствуют не о высокочувствительности извещателей, а о низком качестве. Также специалисты предупреждают, что все дешевые разработки со временем теряют уровень чувствительности. И здесь поможет только замена.

Для решения большинства трудностей по неисправности поможет проверка подключений, правильное расположение детекторов и нормальная работоспособность контактных соединений.

Также для предупреждения необнаружения пожара помогут высококачественные комплектующие извещателей.

Производители и популярные модели

Выпускают извещатели пожарные российские производители и зарубежные. Среди них

  • старейшая японская фирма Hochiki ,
  • популярнейшая Siemens , в которую влилась швейцарский производитель Cerberus.
  • Хорошо зарекомендовали себя пожарные извещатели британской компании Appolo .
  • Также хорошо известна System Sensor , чья продукция выпускается в 8 крупнейших странах – от США до России.

В нашей стране на пожарных тепловых извещателях специализируется

  • предприятие “Аргус-Спектр” , расположенное на базе научно-промышленного комплекса в Санкт-Петербурге.
  • Комплектстройсервис является одним из ведущих по отечественным разработкам.
  • Магнито-Контакт выпускает датчики на базе герметичных контактов,
  • широкий спектр продукции у “Сибирского арсенала ”,
  • научно-производственного предприятия “Специнформатика-СИ ”.
  • Также свою продукцию предлагают Частное предприятие “Артон ” и “Спецавтоматика ”.

Цены

Самые простые максимальные противопожарные тепловые приборы отечественные, их цена от 40 рублей до 150.

  • Дополнительные опции, например, память на сработавший прибор, световой и/или выносной индикатор, увеличение их количества влечет за собой удорожание вдвойне, разброс от 270 р. и до 600.
  • Максимально-дифференциальные датчики можно приобрести за цену от 500 р. до 900.
  • Одна из наиболее продаваемых моделей Аврора ТН (ИП 101-78-А1) , ее цена в среднем 700 р.
  • Наиболее популярная из-за своей ценовой доступности модель взрывозащищенного извещателя ИП 101-3А-А3R обойдется в 200 рублей в среднем, хотя в большинстве своем магазины предлагают взрывозащищенные устройства от 800 до 1 000 р.

Зарубежные адресные максимально-дифференциальные устройства

  • стоят от 1000 рублей за штуку и выше.
  • Среди адресно-аналоговых максимально-дифференциальных — хит продаж модель С2000 ИП-03 , она стоит от 500 до 800 рублей , а вообще разбег адресных извещателей доходит до 2 000 и даже выше.
  • тепловые датчики – термокабели – в зависимости от характеристик (сопротивления кабеля, максимально допустимой длины, напряжения тока и т.д.) реализуются в среднем от 300 до 700 р.

Заключение

Информация о принципах работы, особенностях конструкции, видах и типах тепловых пожарных извещателях поможет взвешенно и без лишних финансовых затрат выбрать наиболее подходящую модель. Правила и нормы установки не так уж сложны, и если отнестись к ним ответственно, то можно предупредить многие неисправности. А лучше всего монтаж проводить под чутким руководством опытных электриков.

Простой детектор задымленности

Индикаторы задымленности применяют в устройствах противопожарной охраны: при возникновении задымленности срабатывает исполнительное устройство- звуковая сирена, например, или устройство тушения.

Самое основное в детекторах задымленности это, конечно, сам датчик.
Датчики дыма по своей конструкции бывают разные:
Тепловые, химические (распознающие увеличение окиси углерода в окружающие среде), ионизационные и так далее но самый простой вариант датчика дыма который можно сделать и самостоятельно это фотоэлектрический.

Принцип работы фотоэлектрического датчика задымленности прост: луч света принимается фотоэлементом. При возникновении дыма луч света искажается и происходит срабатывание датчика.

Источник света при этом может находиться где угодно- внутри самого датчика или даже проходить через все помещение и отражаться от системы зеркал

В качестве исполнительного устройства можно использовать простенькую схемку:

Управление светом в этом устройстве происходит следующим образом. В ждущем состоянии транзистор Т1 освещен, через него течет ток, через транзистор Т2 и обмотку реле Р1 ток не протекает. Затемнение светового потока уменьшает ток через фототранзистор. Транзистор Т2 переходит в режим насыщения, его коллекторный ток вызывает срабатывание реле и замыкание контактов в цепи питания сигнального устройства.

Насчет фототранзистора: в наше время можно купить практически все что угодно, но в принципе фототранзистор можно изготовить и самому:

Для этого нам понадобится любой советский транзистор в металлическом корпусе. Подойдут, например, такие "древние" как МП41 или более мощные, но все-же лучше использовать с наибольшим коэффициентом усиления.
Пользительное дополнение :
Все дело в том что кристалл из которого изготовлен транзистор чувствителен к внешним воздействиям: температуре, свету. Так что для того чтобы сделать фототранзистор из простого транзистора достаточно просто спилить ему часть металлической крышки корпуса (на повредив сам кристалл конечно!).

Если не нашли подходящего транзистора нужной проводимости (на схеме указан P-N-P), то и это не беда- можно использовать и N-P-N, но тогда нужно будет и транзистор Е2 применить той-же проводимости, изменить полярность питания и "развернуть" все диоды в схеме.

Еще одна схема фотодатчика задымленности (более сложная но и более чувствительная) на рисунке ниже:

Свет от светодиода D1 освещает фототранзистор Q1. Фототранзистор открывается, и на его эмиттере возникает положительное напряжение, которое затем поступает на инвертирующий вход операционного усилителя. На второй вход усилителя напряжение снимается с ползунка переменного резистора R9. Этим резистором устанавливают чувствительность сигнализатора/

В отсутствие в воздухе дыма напряжение на эмиттере, фототранзистора QL несколько превышает напряжение, снимаемое с ползунка регулятора чувствительности, при этом на выходе операционного усилителя присутствует малое отрицательное напряжение. Светодиод D2 (может быть любой) не горит. Когда между датчиками появляется дым, освещенность фототранзистора снижается. Напряжение на его эмиттере становится меньше, чем на ползунке переменного резистора R9. Напряжение, появившееся на выходе операционного усилителя, включает светодиод D2 и пьезокерамический звуковой сигнализатор PZ-1.

Датчики пожарной сигнализации обнаруживают возгорание и передают на панель управления. Схема подключения датчиков зависит от количества и степени реагирования сенсоров, находящихся в конструкции. Исходя из этого, принято классифицировать датчики по трём принципам.

Типы извещателей:

  1. Точечные - имеют один сенсор и чувствительны в компактных зонах.
  2. Многоточечные - имеют несколько сенсоров (два, три).
  3. Линейные - реагируют на изменения вдоль линии и делятся на два вида:
    • одиночные (два блока на одной стене и отражатель на противоположной);
    • двухкомпонентные (два блока, находящихся на противоположных стенах).

Наиболее эффективными считаются тепловые и дымовые детекторы.

Дымовые датчики

Дымовые извещатели наиболее популярны и обладают высокой степенью обнаружения возгорания. Принцип работы основан на определении количества дыма в воздухе.

Типы детекторов:

Тепловые датчики

Тепловые извещатели реагируют на изменения температуры окружающей среды. Наиболее эффективным является в помещениях, где хранятся горюче-смазочные материалы.

Типы тепловых извещателей:

  1. Пороговые тепловые датчики имеют установленную норму температуры и реагируют при её превышении. Разделяют:
    • Электромеханический тепловой датчик - это устройство одноразового использования, в котором находится специальная пластина. При повышении температурных норм она плавится и разрывает электрическую цепь. Процесс включает сигнализацию. Пороговая температура в сенсорах такого типа составляет 75С.
    • Полупроводниковые пороговые датчики - это устройство, в котором используется полупроводники, покрытые специальным веществом. При повышении установленной температуры, сигнал на панель передаёт электронная схема. Устройства реагируют на изменения быстрее и не разрушаются, как электромеханические. Сенсоры срабатывают от температуры установленной пользователем.
  2. Дифференциальные тепловые датчики - чувствительны к скорости повышения температуры. Принцип работы извещателей основан на изменении тока наружной от внутренней цепи (разницы температур). Корпус разработан с применением двух термоэлементов, образующих электрические цепи (внутри и снаружи). Ток от цепей поступает на дифференциальный усилитель, который регистрирует температурное соотношение внешней и внутренней цепи. Сигнализация срабатывает, если разница между температурами внутренней и наружной цепями начинает расти.

Установка дымовых и тепловых датчиков

Монтаж извещателей проводят инженеры, согласно составленным расчётам и планам. Схема подключения датчиков проводится по двум принципам.

Схема подключения:

  • квадратная;
  • треугольная.

Наиболее распространённым и упрощённым типом подключения является квадратная схема.
Необходимо также соблюдать расстояние между датчиками и стенами. Расчёты приведены в таблицах.


Плоскость для монтажа датчиков должна иметь покрытие, обеспечивающее защиту от повреждений.

Датчики дыма являются более эффективным инструментом противопожарной сигнализации, так как, в отличие от традиционных тепловых датчиков, они срабатывают до образования открытого пламени и заметного роста температуры в помещении. Ввиду сравнительной простоты реализации, широкое распространение получили оптоэлектронные датчики дыма. Они состоят из дымовой камеры, в которой установлены излучатель света и фотоприемник. Связанная с ними схема формирует сигнал срабатывания, когда обнаруживается существенное поглощение излучаемого света. Именно такой принцип действия положен в основу рассматриваемого датчика.

Приведенный здесь датчик дыма использует батарейное питание, поэтому, в целях увеличения практичности, он должен в среднем потреблять очень малый ток, исчисляемый единицами микроампер. Это позволит ему в течение нескольких лет проработать без необходимости замены батареи питания. Кроме того, в исполнительной цепи предполагается использование звукового излучателя, способного развить звуковое давление не менее 85 дБ. Типичным способом обеспечения очень малого электропотребления устройства, которое должно содержать достаточно сильноточные элементы, как, например, излучатель света и фотоприемник, является его повторно-кратковременный режим работы, причем длительность паузы должна во много раз превышать длительность активной работы.

В таком случае среднее потребление будет сводиться к суммарному статическому потреблению неактивных компонентов схемы. Реализовать такую идею помогают программируемые микроконтроллеры (МК) с возможностями перевода в микромощный дежурный режим и автоматического возобновления активной работы через заданные интервалы времени. Таким требованиям полностью отвечает 14-выводной МК MSP430F2012 с объемом встроенной Flash-памяти 2 кбайт. Данный МК после перевода в дежурный режим LPM3 потребляет ток, равный всего лишь 0,6 мкА. В эту величину также входит потребляемый ток встроенного RC-генератора (VLO) и таймера А, что позволяет продолжать счет времени даже после перевода МК в дежурный режим работы. Однако данный генератор очень нестабилен. Его частота в зависимости от окружающей температуры может варьироваться в пределах 4…22 кГц (номинальная частота 12 кГц). Таким образом, в целях обеспечения заданной длительности пауз в работе датчика, в него должна быть заложена возможность калибровки VLO. Для этих целей можно использовать встроенный высокочастотный генератор — DCO, который откалиброван производителем с точностью не хуже ±2,5% в пределах температурного диапазона 0…85°С.

Со схемой датчика можно ознакомиться на рис. 1.

Рис. 1.

Здесь в качестве элементов оптической пары, размещенных в дымовой камере (SMOKE_CHAMBER), используются светодиод (СД) и фотодиод инфракрасного (ИК) спектра. Благодаря рабочему напряжению МК 1,8…3,6 В и надлежащим расчетам других каскадов схемы, достигнута возможность питания схемы от двух батареек типа ААА. Для обеспечения стабильности излучаемого света в условиях питания нестабилизированным напряжением рабочий режим СД задается источником тока 100 мА, который собран на двух транзисторах Q3, Q4. Данный источник тока активен, когда на выходе P1.6 установлен высокий уровень. В дежурном режиме работы схемы он отключается (P1.6 = «0»), а общее потребление каскадом ИК излучателя снижается до ничтожно малого уровня тока утечки через Q3. Для усиления сигнала фотодиода применена схема усилителя фототока на основе ОУ TLV2780. При выборе этого ОУ руководствовались стоимостью и временем установления. У данного ОУ время установления составляет до 3 мкс, что позволило не использовать поддерживаемую им возможность перехода в дежурный режим работы, а взамен этого — управлять питанием усилительного каскада с выхода МК (порт P1.5). Таким образом, после отключения усилительного каскада он вообще не потребляет никакого тока, а достигнутая экономия тока составляет около 1,4 мкА.

Для сигнализации о срабатывании датчика дыма предусмотрены звуковой излучатель (ЗИ) P1 (EFBRL37C20, Panasonic) и светодиод D1. ЗИ относится к пьезоэлектрическому типу. Он дополнен компонентами типовой схемы включения (R8, R10, R12, D3, Q2), которые обеспечивают непрерывную генерацию звука при подаче постоянного напряжения питания. Примененный здесь тип ЗИ генерирует звук частотой 3,9±0,5 кГц. Для питания схемы ЗИ выбрано напряжение 18 В, при котором он создает звуковое давление порядка 95 дБ (на расстоянии 10 см) и потребляет ток около 16 мА. Данное напряжение генерирует повышающий преобразователь напряжения, собранный на основе микросхемы IC1 (TPS61040, TI). Требуемое выходное напряжение задано указанными на схеме номиналами резисторов R11 и R13. Схема преобразователя также дополнена каскадом изоляции всей нагрузки от батарейного питания (R9, Q1) после перевода TPS61040 в дежурный режим (низкий уровень на входе EN). Это позволяет исключить протекание токов утечки в нагрузку и, таким образом, свести общее потребление данным каскадом (при отключенном ЗИ) до уровня собственного статического потребления микросхемы IC1 (0,1 мкА). В схеме также предусмотрены: кнопка SW1 для ручного включения / отключения ЗИ; «джамперы» для конфигурации цепи питания схемы датчика (JP1, JP2) и подготовки к работе ЗИ (JP3), а также разъемы внешнего питания на этапе отладки (X4) и подключения адаптера встроенной в МК отладочной системы (X1) через двухпроводной интерфейс Spy-Bi-Wire.

Рис. 2.

После сброса МК выполняется вся необходимая инициализация, в т.ч. калибровка генератора VLO и настройка периодичности возобновления активной работы МК, равной восьми секундам. Вслед за этим МК переводится в экономичный режим работы LPM3. В этом режиме остается в работе VLO и таймер А, а ЦПУ, высокочастотная синхронизация и прочие модули ввода-вывода прекращают работу. Выход из этого состояния возможен по двум условиям: генерация прерывания по входу P1.1, которое возникает при нажатии на кнопку SW1, а также генерация прерывания таймера А, которое происходит по истечении установленных восьми секунд. В процедуре обработки прерывания по входу P1.1 вначале генерируется пассивная задержка (примерно 50 мс) для подавления дребезга, а затем изменяется на противоположное состояние линии управления ЗИ, давая возможность вручную управлять активностью ЗИ. Когда же возникает прерывание по таймеру А (прерывание ТА0), выполняется процедура оцифровки выхода усилителя фототока в следующей последовательности. Вначале выполняются четыре оцифровки при отключенном ИК светодиоде, затем — четыре оцифровки при включенном светодиоде. В дальнейшем эти оцифровки подвергаются усреднению. В конечном счете формируются две переменные: L — усредненное значение при отключенном ИК светодиоде, и D — усредненное значение при включенном ИК светодиоде. Четырехкратные оцифровки и их усреднения выполняются с целью исключения возможности ложных срабатываний датчика. С этой же целью выстраивается дальнейшая цепочка «препятствий» ложному срабатыванию датчика, начиная с блока сопоставления переменных L и D. Здесь сформулировано необходимое условие срабатывания: L — D > x, где x — порог срабатывания. Величину x выбирают опытным путем из соображений нечувствительности (например, к пыли) и гарантированного срабатывания при попадании дыма. Если условие не выполняется, происходит отключение светодиода и ЗИ, сбрасывается флаг состояния датчика (AF) и счетчик SC. После этого, выполняется настройка таймера А на возобновление активной работы через восемь секунд, и МК переводится в режим LPM3. Если условие же выполняется, проверяется состояние датчика. Если он уже сработал (AF = «1»), то никаких дальнейших действий выполнять не нужно, и МК сразу переводится в режим LPM3. Если же датчик еще не сработал (AF = «0»), то выполняется инкрементирование счетчика SC с целью подсчета числа обнаруженных выполнений условия срабатывания, что в еще большей степени позволяет повысить помехоустойчивость. Позитивное решение о срабатывании датчика принимается после обнаружения трех подряд условий срабатывания. Однако во избежание чрезмерного затягивания задержки реагирования на появление дыма, длительность нахождения в дежурном режиме сокращается до четырех секунд после первого выполнения условия срабатывания и до одной секунды — после второго. Описанный алгоритм реализует программа, доступная по ссылке http://www.ti.com/litv/zip/slaa335 .

В заключение определим средний потребляемый датчиком ток. Для этого в таблицу 1 занесены данные по каждому потребителю: потребляемый ток (I) и длительность его потребления (t). Для циклически-работающих потребителей, с учетом восьмисекундной паузы, средний потребляемый ток (мкА) равен I ґ t/8 ґ 106. Суммируя найденные значения, находим средний потребляемый датчиком ток: 2 мкА. Это очень хороший результат. Например, при использовании батареек емкостью 220 мА ґ ч расчетная длительность работы (без учета саморазряда) составит около 12 лет.

Таблица 1. Средний потребляемый ток с учетом восьмисекундной паузы в работе датчика

Потребитель тока Длительность, мкс Потребляемый ток, мкА Средний потребляемый ток, мкА
MSP430 в активном режиме (1 МГц, 3 В) 422,6 300 0,016
MSP430 в режиме LPM3 8.10 6 0,6 0,6
Операционный усилитель 190,6 650 0,015
ИОН АЦП 190,6 250 0,006
Ядро АЦП 20,8 600 0,0016
ИК светодиод 100,8 105 1,26
TPS61040 в режиме отключения непрерывно 0,1 0,1
Всего: 2

Получение технической информации, заказ образцов, поставка — e-mail:

Еще в древние времена люди использовали передачу информации о начале возникновения каких-то событий на расстояние в виде световых сигналов или хорошо слышимых звуков, когда на возвышенностях разжигали костры либо звонили в колокола.

Жизнь современного человека связана с эксплуатацией большого количества разнообразной техники, работу которой часто отслеживают дистанционно с помощью различных видов сигнализации. Среди них сведениям о начале возникновения пожара на ответственных промышленных объектах и внутри многоэтажных зданий с большим количеством людей отводится важнейшее значение.

Назначение пожарной сигнализации

Ее основная задача сводится к тому, чтобы при первых признаках возгорания оперативно передать информацию в дежурную службу, способную быстро прибыть на место происшествия и принять экстренные меры по тушению возникшего очага пламени, предотвратить его распространение.

Дополнительными задачами систем пожарной сигнализации (СПС) могут быть:

    дистанционное задействование заранее расположенных средств тушения пожара — различного вида огнетушителей, созданных применительно к конкретным условиям производства или объекта;

    обеспечение разблокировки систем контроля управления доступом для облегчения массовой эвакуации людей из опасного места;

    передача информации на дополнительные пункты диспетчерского управления;

    другие функции.

Состав пожарной сигнализации

Система пожарной сигнализации рассматривается как специфическая электрическая система управления, схема которой состоит из различных частей:

    специальных датчиков — извещателей, сообщающих о начале возгорания;

    каналов передачи сигналов о срабатывании датчика;

    пультов контроля, приема (ПКП) и отображения информации для оперативного персонала;

    систем оповещения людей.

Как устроены и работают пожарные извещатели

Оценить возникновение первых признаков возгорания можно по появлению дыма, быстрому нагреву окружающей среды или сильной вспышке света. Эти три фактора заложены в принцип работы различных технических устройств.

В промышленном и жилом секторе наибольшее распространение получили четыре вида датчиков, работающих на различных принципах:

1. обнаружения начала распространения дыма — дымовые извещатели;

2. появления резкого нагрева внутри помещения — тепловые;

3. выделения электромагнитных волн оптического диапазона видимого, ультрафиолетового либо инфракрасного спектра — пламени;

4. одновременного воздействия тепла и дыма, а часто и в комплексе с учетом появления яркого света — комбинированные.

Датчики пожарной сигнализации могут только отслеживать состояние контролируемого параметра или реагировать на его изменение выдачей сигнала во внешнюю систему. По этому принципу они относятся не только к пассивным, но и к активным устройствам. Извещатели могут создаваться для контроля определенной местной зоны или протяженного, вытянутого пространства. Последние конструкции называют линейными.

Принцип работы дымовых извещателей

Датчик размещают на потолке в том месте, куда поднимается и начинает концентрироваться дым при начале возгорания.

Конструктивно дымовой извещатель состоит из:

1. разъемного корпуса;

2. электронной платы;

3. оптической системы.

Эти детали по отдельности собираются на автоматизированных технологических линиях и после прохождения различных тестов и проверок собираются вручную в единый модуль.

Работа датчика основана на фиксации момента появления дыма в его корпусе за счет срабатывания оптической системы, в состав которой входят:

    Испускающий строго направленный луч света;

    Который преобразует падающий на него световой поток в электрический сигнал.

Конструктивно световой луч от источника направлен немного в сторону от фотоэлемента. При нормальных условиях эксплуатации с обычным состоянием воздуха в помещении свет не может дойти до поверхности фотоэлемента, как показано на картинке №1.

В случае появления дыма в корпусе датчика начинается отражение световых лучей во все стороны. Они попадают на фотоэлемент, и он срабатывает. Этот момент контролирует электронная схема. Она формирует информационную команду, передает ее по каналам связи на приемное устройство пожарной сигнализации.

Если в полость датчика станет проникать водяной пар или газы, отклоняющие световой поток, то фотоэлемент тоже сработает, а логическая схема выдаст ложную информацию о возникновении пожара.

По этой причине датчики дыма не устанавливают в тех местах, где они способны неправильно срабатывать. К ним относят кухни, ванные, душевые. Монтаж датчиков дыма в местах, где собираются курильщики, тоже вызовет частую и ложную их работу.

Подобный пожарный извещатель не среагирует на повышение температуры и вспышку света открытого огня. Поэтому такие модули устанавливают в тех помещениях, где возгорание связано с задымлением среды от температурного повреждения изоляции электрических проводов, тканей, других подобных материалов.

Их устанавливают в местах с большим количеством работающего электрооборудования на промышленных производствах, складах хранения материальных средств, электрических подстанциях и лабораториях.

Принцип работы тепловых извещателей

Их тоже располагают на потолке, куда поднимается тепло, выделяемое открытым огнем. Они могут работать по фактору:

1. достижения максимально допустимого значения нагрева;

2. скорости возрастания температуры.

Пороговые устройства

Датчики этого типа стали создаваться самыми первыми. Вначале они работали за счет вытекания легкорасплавляемого сплава из предохранителя, установленного в месте контакта двух проводников. За счет этого при нагреве окружающей среды до 60÷70 градусов происходил разрыв электрической цепи и выдавался сигнал о начале пожара.

Принцип работы одной из подобных конструкций одноразового, невосстанавливаемого теплового извещателя типа ИП-104 показан на картинке.

Внутри корпуса размещены пружинные контакты, которые отводятся друг от друга силами механического натяжения, а удерживаются за счет сплава Вуда, состоящего из легкоплавких металлов. Датчик срабатывает при нагреве до 68 градусов, а разрыв цепи обеспечивают взведенные пружины.

Подобные конструкции постоянно усовершенствуются. Сейчас они выпускаются с заменяемыми плавками вставками или элементами, управляемыми на расстоянии. Логическая схема может быть выполнена на разных принципах и электронных компонентах.

Интегральные извещатели


В основу работы датчика положены замеры скорости изменения электрического сопротивления металлов при их нагреве.

На клеммы теплового контрольного элемента от источника питания подается стабилизированное напряжение. Под его действием в электрической цепи через проволочный резистор и измерительное устройство протекает ток, определяемый по закону Ома. Его величина строго зависит от сопротивления.

Под воздействием обычной комнатной температуры его значение остается практически неизменным. При стабилизированном напряжении ток тоже не меняется.

Когда на контрольный элемент начинает действовать температура открытого огня от появившегося пламени, то сопротивление датчика начинает быстро возрастать и по такому же закону начинает меняться ток. Скорость его отклонения от установившегося ранее значения фиксируется электронной схемой, которая обычно настроена на возрастание 5 градусов в секунду.

При достижении критической величины скорости нагрева логическая схема датчика отправляет по каналам связи сигнал на приемный модуль.

В этой схеме отсутствуют устройства, реагирующие на дым, и она на него не сработает.

Подобные конструкции наиболее эффективно работают на пожарах, вызванных воспламенением горючих жидкостей из нефтепродуктов, углеродного топлива, пожароопасных твердых материалов. Их устанавливают на местах хранения емкостей с легковоспламеняющимися жидкостями, складах строительных материалов и в подобных промышленных зданиях.

Принцип работы извещателей пламени


Довольно многочисленный класс этих датчиков реагирует на открытый огонь или тлеющий очаг пожара без возникновения дыма.

Чувствительный фотоэлемент фиксирует появление одного из спектров оптических волн или его полный диапазон. При этом конструкция получается довольно сложная и дорогостоящая. По этой причине их не применяют в жилых домах, а используют на предприятиях нефтяной и газовой промышленности.

Наиболее простые модели этого типа способны срабатывать от воздействия сварочной дуги, света яркого солнца, люминесцентных ламп, электромагнитных помех оптического спектра. Для устранения ложной работы могут использоваться различные фильтры.

Принцип работы комбинированных извещателей

Все конструкции пожарных датчиков, работающих по какому-то одному признаку возгорания, могут ложно сработать. Чтобы расширить предел достоверности передаваемой информации создают устройства, сразу сочетающие в себе возможности дымовых и тепловых моделей, или дополненные еще функцией реакции на пламя.

Для этого в них включают сразу инфракрасный, тепловой и оптический сенсор. Они могут в большинстве случаев настраиваться на срабатывание от каждого входного параметра отдельно или только при их одновременном появлении.

Для ответственных промышленных помещений существуют четырехканальные комбинированные извещатели, учитывающие дополнительно появление угарного газа.

Принцип работы ручных пожарных извещателей

Самые простые конструкции из обыкновенной кнопки с пружинным самовозратом используются для ручного оповещения оперативных работников о начале возгорания. Для этого персоналу, заметившему начало признаков появления огня, достаточно открыть защитную крышку и нажать на кнопку.

При этом действии замыкаются контакты схемы и включается оповещение «Пожарная тревога». Когда кнопка будет отпущена, то сигнал не прерывается: цепочка его питания автоматически ставится на самоблокировку. Предупреждение людей о пожарной опасности будет происходить до тех пор, пока ответственный работник специальным ключом не произведет ее разблокировку.

Подобные ручные датчики монтируют во всех помещениях, где собираются массы людей (магазины, больницы, кинотеатры, промышленные объекты) на высоте полтора метра и на расстоянии между ними до 50 м.

Краткие выводы по выбору пожарных извещателей

Конструкция и принцип работы датчика должны максимально соответствовать условиям, обеспечивающим пожарную безопасность контролируемого помещения.

В больших промышленных зданиях с разным оборудованием не всегда целесообразно использовать однотипные марки извещателей, а их количество даже при ограниченных финансовых возможностях должно перекрывать все опасные зоны возгорания в соответствии с требованиями нормативных документов.

Каналы передачи сигналов о срабатывании извещателей

После того как типы и количество пожарных датчиков определены для установки в помещениях, их подключают проводами в шлейфы, которые собирают на приемно-контрольный прибор в оперативной службе безопасности.

Для шлейфов выбирают провода с медными жилами и прокладывают их с возможностью обеспечения контроля технического состояния. К ним СНИП и ГОСТ предъявляют требования по способам раздельной прокладки с другими кабельными магистралями и по обеспечению защиты от механических повреждений.

Приборы приема и контроля сигналов

Пульты ПКП создаются производителями разной степени сложности для профессионального, полупрофессионального или бытового использования.

Профессиональные устройства предназначены для решения не только вопросов пожарной безопасности, но и охраны объектов. Они:

    отслеживают состояние многолучевых схем и способны одновременно обрабатывать аналоговые и цифровые сигналы;

    допускают каскадное объединение в блоки для создания сложной иерархии схем контроля;

    подключаются к компьютеру пожарно-охранной службы;

    фиксируют по времени и передают всю информацию, происходящую на контролируемом объекте;

    используются только на ответственных промышленных объектах.

Полупрофессиональные устройства работают с цифровыми сигналами. Их изготавливают в едином корпусе, объединяющем:

    блок питания от стационарной электрической сети;

    резервный источник электроснабжения — мощную аккумуляторную батарею, способную обеспечивать автономную работу системы от нескольких часов до суток;

    электронный блок управления;

    процессор.

На ответственных объектах процессор защищают от несанкционированного доступа размещением в труднодоступных местах с выполнением полного экранирования, предотвращающего от попыток взлома специальным дистанционным сканером, и сложным кодированием обрабатываемой и передаваемой информации.

Такие модели способны обрабатывать сигналы от двухсот пятидесяти датчиков. Они уже могут использоваться в жилом секторе.

Многолучевые бытовые ПКП

Создаются для работы в частном домовладении с различными надворными хозяйственными постройками.

Способны обрабатывать сигналы от электрических контактов герконов или электронных схем, а также информацию, поступающую по беспроводным каналам от двух-восьми различных источников.

Простейшие квартирные ПКП

Их представляют наиболее простые модели, работающие в одноканальном режиме, которого вполне достаточно для владельца квартиры. Даже такой прибор способен передавать информацию о срабатывании датчиков на мобильный телефон хозяина в виде СМС.

Пульты ПКП, предназначенные для бытовых целей, сопровождаются подробной технической документацией производителя с инструкциями и схемами подключения. Для них введен евростандарт EN54.

Системы оповещения о пожаре

В многолюдных зданиях используется световая и звуковая система предупреждения персонала и посетителей оповещением команды «Тревога». Одновременно происходит передача информации руководству предприятия и дежурным службам для принятия экстренных мер.

Пример распределения различных приборов пожарной сигнализации и организации системы оповещения показан на картинке.

Как и все технические приборы средства пожарной сигнализации требуют периодического контроля и проверок работоспособности, выполнения комплекса мер обслуживания, настроек, корректировок. При этом необходимо соблюдать правила их эксплуатации.

Хочется выразить уверенность, что изложенные начальные сведения об устройстве современной пожарной сигнализации натолкнут читателя на мысль: на практике создать для себя оптимальную систему, исключающую пожар при случайном возгорании или при преднамеренном поджоге.