Эффект зеебека простым языком. Эффект Зеебека. Краткий обзор развития этого открытия. Термоэлектрические свойства полупроводников

Эффект Зеебека (ЭЗ) представляет процесс появления разницы потенциалов вместе соединения двух разных материалов вследствие нагревания указанной области. Данный эффект был получен Зеебеком в 1822 году. Именно тогда он провел опыт нагревания контакта из двух материалов, используя для этого висмут и сурьму. Для фиксирования получаемых изменений был использован гальванометр. Придерживая стык соединенных материалов, он увидел, что магнитная стрелка отклонилась от начального положения. Естественно, что разница была не такой заметной. Однако опыты повторялись вновь и вновь, благодаря чему удалось получить требуемый результат.

Указанный эффект появился вследствие появления электрической движущей силы в замкнутом контуре, выполненном из разных материалов. Чуть позже выяснилось, что различие температур вызывается появлением термоэдс. А уже следствием термоэдс в замкнутом контуре становится . Сегодня данный эффект находит применение во многих областях. Но наибольшее его применение в современном мире можно наглядно увидеть в .

Устройство

Эффект Зеебеказаключается в создании термопары, которая состоит из двух разнородных металлов, образующих друг с другом замкнутый контур. Металлы друг от друга отличаются разными коэффициентами Зеебека, вследствие чего возникает напряжение между нагретым проводником термопары и ненагретым проводником. Это напряжение прямо пропорционально разности их температурных значений.

Во многих термоэлектрических устройствах применяется эффект Зеебека. В большинстве случаев в структуру термоэлектрических генераторов включаются термобатареи, которые набираются из полупроводниковых термических элементов. Они могут соединяться . Также туда входят теплообменники нагреваемых и не нагреваемых спаев термических батарей.

Типичная схема цепи термоэлектрического генератора состоит из:

  • Термоэлемента полупроводникового типа , который выполнен из ветвей контактов p- и n-типа проводимости. Эти контакты имеют различные знаки коэффициента термоэлектродвижущей силы.
  • Пластин коммутации , которые имеют нагреваемые и ненагреваемые спаи.
  • Активной нагрузки .

При включении термоэлемента на нагрузку в контуре начинает течь постоянный ток, который вызван ЭЗ . Именно этот же ток приводит к поглощению и выделению тепла на спайках. Чтобы обеспечить высокий коэффициент ЭДС, подобные должны выделяться отличной электрической проводимостью. А для получения существенного перепада температур между нагретыми и ненагретыми спаями, достаточно невысокую теплопроводность.

Под такие параметры наилучшим образом подходят высоколегированные материалы.

Принцип действия

Эффект Зеебека в том, что в замкнутом контуре с жилами из разных материалов, может появиться эдс тогда, когда их контакты имеют отличающиеся показатели температуры. Если говорить по-простому, то параметр возникающей ЭДС во многом зависит от применяемых материалов проводников, в том числе от температур ненагретого и нагретого проводника.

При наличии в проводнике градиента температур по всей длине наблюдается явление, при котором электроны на нагретом конце имеют на порядок большие скорости и энергии, чем в не нагретом. Вследствие этого появляются электроны, которые направляются к холодному концу. Именно на нем скапливается минусовой заряд. На нагретом же конце происходит накапливание плюсового заряда.

Накопление заряда наблюдается до того момента, пока потенциальное отличие не достигнет показателя, при котором электроны не начнут течь обратно, вследствие чего потенциал придет в равновесие.

Эффект Зеебека характеризуется появлением различных свойств:

  • Наблюдается появление разности потенциалов между контактами. Объясняется это тем, что на разных проводниках, которые контактируют друг с другом, имеется разная энергия Ферми. В результате при замыкании цепи по­тен­ци­а­лы элек­тро­нов имеют одинаковое состояние, вследствие чего появляется разность потенциалов между контактами. На контактах появляется элек­три­че­ское поле, которое локализуется в тончайшем приграничном слое.

При замыкании цепи появляется напряжение на проводниках. Направление электрического поля идет в обоих контактах от большего к меньшему. Если температура контактов изменить, то напряжение также будет меняться. Но с изменением разности потенциалов будет меняться и электрическое поле в одном из контактов. В результате появится ЭДС в контуре. Если проводники будут иметь равную температуру, то объемная и контактная ЭДС в указанном случае будут равны нулю.

  • Наблюдается появление фононового увлечения. При наличии в твердом теле градиента температурного диапазона число фононов, которые направляются в конец ненагретого проводника, будет увеличиваться. Их будет становиться больше, чем тех, что идут в обратном направлении. Вследствие происходящих столкновений с электронами фононы будут утягивать вслед за собой другие. В результате на нагретом проводнике будет происходить накопление отрицательного заряда. Тогда как в нагретом проводнике будут накапливаться положительные заряды до того момента, пока разность потенциалов не сравняется с эффектом увеличения. Раз­ность по­тен­ци­а­лов при низ­ких тем­пе­ра­ту­рах способна достигать параметров выше в сотни раз.
  • Наблюдается появление магнонного увлечения, но только в проводниках, выполненных из магнитных материалов. ЭДС появляется вследствие увле­че­ния элек­тро­нов маг­но­на­ми.

Практическое применение

Такие устройства находят обширное применение в повседневной жизни человека. К примеру, посещая сауну, мало кто задумывается, что температура в ней поддерживается при помощи термопары.

То есть термопара — это термоэлектрический термометр, который выполнен из двух разных металлов. Они соединяются при помощи сварки. При этом один конец размещается непосредственно в сауне, а другие свободные концы выводятся наружу и подключаются к мерительному устройству. Когда печь нагревает помещение сауны, то концы термопары работают в совершенно разных температурных значениях. В результате этого появляется температурный градиент, который ведет к появлению термического тока, то есть термоэлектродвижущей силы.

Мерительное устройство выполняет преобразование термического тока в показания термометра или выступает в качестве . В результате при достижении определенной установленной температуры печь в сауне включается или отключается. Зная, что из себя представляет эффект Зеебека, можно даже управлять температурой в сауне. Если доступ к блоку управления печью в городской бане, к примеру, закрыт на замок, то управлять температурой можно и без него. С этой целью необходимо на конец термической пары намотать смоченную в воде тряпку или платочек. Термопара «остудится», что приведет к повышению температуры в помещении. Но это нужно делать с осторожностью, не привлекая внимания администратора сауны.

Применение

Эффект Зеебекана сегодняшний день применяется в самых разных устройствах. Примером этому могут быть сенсоры напряжения, датчики температуры, датчики интенсивности света и тому подобное.

Сегодня устройства, которые работают на ЭЗ, используются в:

  • Навигационных системах кораблей и пароходов, бороздящих моря и океаны.
  • Промышленных и бытовых генераторах.
  • Устройствах энергетического обеспечения космических кораблей.
  • Преобразователях солнечной энергии.
  • Отопительных устройствах.
  • Устройствах, используемых в оборудовании для перекачки и переработки газа, и нефти.
  • Преобразователях тепла, которое вырабатывают источники природы. К примеру, это могут быть источники геотермальной воды.
  • Космических зондах, которые летят по просторам вселенной.
  • Различных термоэлектрических датчиках и так далее.

Будущее

Эффект Зеебекадовольно сильно интересует ученых. Сравнительно недавно ученые из Огайо разработали технологию, которая позволяет сделать эффект невероятно эффективным. Основным недостатком современных устройств в том, что данный эффект не позволяет вырабатывать значительное количество энергии даже при использовании сильнолегированных контактов и имеющих высокую разность температур.

Ученые предлагают использовать немагнитный полупроводник, который устанавливается во внешнее магнитное поле с температурой в пределах 2-20 К. В этом случае появляется гигантский спиновый эффект Зеебека. Использование подобных термопар дает возможность существенно увеличить показатели применяемых устройств, расширить их функциональность и применение.

Самый простой пример – это их использование в качестве теплоотводящих устройств в системах кондиционирования и охлаждения. Благодаря отсутствию движущихся частей и дешевизне применяемых элементов оборудование будет работать безотказно десятками лет, а стоимость эксплуатации будет невероятно низкой. Такие термопары даже смогут вырабатывать ток из тепла для подпитки устройства, которое его выделяет. К примеру, их можно использовать для охлаждения персонального компьютера. А спиновой эффект может быть использован для создания электроники нового поколения.

Термоэлектрические явления представляют собой отдельную тему в физике, в которой рассматривают, как температура может порождать электричество, а последнее вести к изменению температуры. Одним из первых открытых термоэлектрических явлений стал эффект Зеебека.

Предпосылки открытия эффекта

В 1797 году итальянский физик Алессандро Вольта, проводя исследования в области электричества, открыл одно из удивительных явлений: он обнаружил, что при контакте двух твердых материалов в области контакта появляется разность потенциалов. Она получила название контактной разности. Физически этот факт означает, что зона соприкосновения разнородных материалов обладает электродвижущей силой (ЭДС), способной привести к появлению тока в замкнутой цепи. Если теперь соединить в одну цепь два материала (сформировать два контакта между ними), то на каждом из них появится указанная ЭДС, которая будет одинакова по модулю, но противоположна по знаку. Последнее объясняет, почему не возникает никакого тока.

Причиной появления ЭДС является разный уровень Ферми (энергии валентных состояний электронов) в разных материалах. При соприкосновении последних уровень Ферми выравнивается (в одном материале понижается, в другом - повышается). Этот процесс происходит за счет перехода электронов через контакт, что и приводит к появлению ЭДС.

Сразу следует отметить, что величина ЭДС является незначительной (порядка нескольких десятых вольта).

Открытие Томаса Зеебека

Томас Зеебек (немецкий физик) в 1821 году, то есть спустя 24 года после обнаружения Вольтом контактной разности потенциалов, провел следующий опыт. Он соединил пластину висмута и меди, а рядом с ними расположил магнитную стрелку. В этом случае, как выше было сказано, никакого тока не возникало. Но стоило ученому поднести пламя горелки к одному из контактов двух металлов, как магнитная стрелка начала поворачиваться.

Теперь мы знаем, что причиной ее поворота стала сила Ампера, создаваемая проводником с током, но на то время Зеебек этого не знал, поэтому он ошибочно предположил, что возникает индуцированная намагниченность металлов в результате разницы температуры.

Правильное объяснения этому явлению было дано несколько лет позже датским физиком Хансом Эрстедом, который указал, что речь идет именно о термоэлектрическом процессе, и по замкнутой цепи идет ток. Тем не менее открытый Томасом Зеебеком термоэлектрический эффект в настоящее время носит его фамилию.

Физика происходящих процессов

Еще раз для закрепления материала: суть эффекта Зеебека заключается в индуцировании электрического тока в результате поддержания различной температуры двух контактов разных материалов, которые образуют замкнутую цепь.

Чтобы понять, что происходит в указанной системе, и почему в ней начинает бежать ток, следует познакомиться с тремя явлениями:

  1. О первом уже было упомянуто - это возбуждение ЭДС в области контакта из-за выравнивания уровней Ферми. Энергия этого уровня в материалах изменяется при повышении или понижении температуры. Последний факт приведет к появлению тока, если замкнуть два контакта в цепь (условия равновесия в зоне соприкосновения металлов при разных температурах будут разными).
  2. Процесс перемещения носителей заряда из горячих областей в холодные. Этот эффект можно понять, если вспомнить, что электроны в металлах и электроны и дырки в полупроводниках в первом приближении можно считать идеальным газом. Как известно, последний при нагревании в замкнутом объеме увеличивает давление. Иными словами, в зоне контакта, где температура выше, "давление" электронного (дырочного) газа тоже выше, поэтому носители заряда стремятся уйти в более холодные области материала, то есть к другому контакту.
  3. Наконец, еще одно явление, которое приводит к появлению тока в эффекте Зеебека, это взаимодействие фононов (решеточных колебаний) с носителями заряда. Ситуация выглядит таким образом, будто фонон, двигаясь от горячего спая к холодному, "ударяет" об электрон (дырку) и сообщает ему дополнительную энергию.

Отмеченные три процесса в итоге определяют возникновение тока в описанной системе.

Как описывают это термоэлектрическое явление?

Очень просто, для этого вводят некий параметр S, который получил название коэффициента Зеебека. Параметр показывает, ЭДС величины индуцируется, если поддерживается разность температур контактов равная 1 Кельвину (градусу Цельсия). То есть можно записать:

Здесь ΔV - ЭДС цепи (напряжение), ΔT - разность температур горячего и холодного спаев (зон контакта). Эта формула является лишь приближенно верной, поскольку S в общем случае зависит от температуры.

Значения коэффициента Зеебека зависят от природы материалов, вступивших в контакт. Тем не менее однозначно можно сказать, что для металлических материалов эти значения равны единицам и десяткам мкВ/К, в то время как для полупроводников они составляют сотни мкВ/К, то есть полупроводники обладают на порядок большей термоэлектрической силой, чем металлы. Причиной этого факта является более сильная зависимость характеристик полупроводников от температуры (проводимость, концентрация носителей заряда).

КПД процесса

Удивительный факт перевода теплоты в электричество открывает большие возможности для применения этого явления. Тем не менее для его технологического использования важна не только сама идея, но и количественные характеристики. Во-первых, как было показано, возникающая ЭДС является достаточно маленькой. Эту проблему можно обойти, если использовать последовательное соединение большого числа проводников (что и делается в ячейке Пельтье, речь о которой пойдет ниже).

Во-вторых, это вопрос эффективности генерации термоэлектричества. И этот вопрос остается открытым по сей день. КПД эффекта Зеебека является чрезвычайно низким (порядка 10 %). То есть из всего затраченного тепла лишь одну десятую его можно будет использовать для совершения полезной работы. Многие лаборатории во всем мире стараются поднять этот КПД, что можно сделать, разработав материалы нового поколения, например, с помощью нанотехнологий.

Использование эффекта, открытого Зеебеком

Несмотря на низкий КПД, он все же находит свое применение. Ниже перечислим основные из областей:

  • Термопара. Эффект Зеебека с успехом используют для измерения температур разных объектов. По сути, система из двух контактов - это и есть термопара. Если известен ее коэффициент S и температура одного из концов, то, измеряя напряжение, которое возникает в цепи, можно вычислить температуру другого конца. Термопары также применяют для измерения плотности лучистой (электромагнитной) энергии.
  • Генерация электричества на космических зондах. Запускаемые человеком зонды для исследования нашей Солнечной системы или космоса за ее пределами используют эффект Зеебека для питания электроники, находящейся на их борту. Осуществляется это благодаря радиационному термоэлектрическому генератору.
  • Применение эффекта Зеебека в современных автомобилях. Компании BMW и Volkswagen заявили о появлении в их автомобилях термоэлектрических генераторов, которые будут использовать тепло газов, выбрасываемых из выхлопной трубы.

Другие термоэлектрические эффекты

Существуют три термоэлектрических эффекта: Зеебека, Пельтье, Томсона. Суть первого уже была рассмотрена. Что касается эффекта Пельтье, то он заключается в нагревании одного контакта и охлаждении другого, если рассмотренную выше цепь подсоединить к внешнему источнику тока. То есть эффекты Зеебека и Пельтье являются противоположными.

Эффект Томсона имеет ту же природу, однако он рассматривается на одном материале. Его суть состоит в выделении или поглощении тепла проводником, по которому течет ток и концы которого поддерживаются при разных температурах.

Когда говорят о петентах на термо генераторные модули с эффектом Зеебека, то, конечно же, первым делом вспоминают про ячейку Пельтье. Она представляет собой компактное устройство (4x4x0,4 см), изготовленное из ряда последовательно соединенных проводников n- и p-типа. Изготовить ее можно своими руками. Эффекты Зеебека и Пельтье лежат в основе ее работы. Напряжения и токи, с которыми она работает, невелики (3-5 В и 0,5 A). Как было сказано выше, КПД ее работы очень маленький (≈10 %).

Применяется она для решения таких бытовых задач, как нагрев или охлаждение воды в кружке или подзарядка мобильного телефона.

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Юго-Западный государственный университет»

Факультет фундаментальной и прикладной информатики

Кафедра ЗИ и СС

полное название кафедры

Направление подготовки (специальность)

Средства связи с подвижными объектами, 210402

шифр и название направления (подготовки),специальности

о преддипломной практике

вид практики

на кафедре ЗИ и СС

название предприятия, организации, учреждения

студента (слушателя) 5 курса, группы ТК – 91

курса, группы

Калабина Дмитрия Аналольевича

фамилия, имя, отчество

Руководитель практики от М.П.

предприятия, организации,

учреждения

д.т.н. Мухин Иван Ефимович

должность, фамилия, и. о.

подпись, дата Оценка

Руководитель практики от

университета

Севрюков Александр Евгеньевич

должность, фамилия, и. о.

подпись, дата Оценка

Введение..................................................................................................................3

1 Термоэлектрические источники альтернативного электропитания................4

1.1 История открытия эффекта Зеебека............................................................4

1.2 Эффект Зеебека и его практическое применение........ ...............................8

1.3 Обзор современных применений термоэлектрического преобразования...................... ............................................................................11

1.4 Термоэлектрические генераторные сборки и устройства..........................................................................................................14

1.5 Термоэлектричество в быту.......................................................................16

1.6 Измерение тепловых потоков (тепломеры)..............................................18

1.6.1 Применение ТГМ для питания маломощных устройств при малых тепловых потоках (Energy Harvesting)............................................................18

1.7 Основные формулы и соотношения для определения параметров ТЭГ. .............................................................................................................................21

1.7.1 Основные параметры ТГМ................................................................23

1.7.2 Варианты исполнения ТГМ..............................................................26

1.8 Результаты испытаний на малых перепадах температур.........................................................................................................29

1.8.2Установка генераторных модулей.....................................................33

Введение

С увеличение сложности летательных аппаратов возникает необходимость объективного контроля в реальном масштабе времени до не скольких тысяч параметров в зависимости от сложности летательного аппарата. В связи с этим была разработана 101 поправка ИКАО от 14 ноября 2013года, которая определяет систему управления безопасности полетов в РФ для летательных аппаратов. Один из основных аспектов данного документа – это мониторинг технического состояния основных узлов и агрегатов летательных аппаратов.

Большое количество датчиков вызывает противоречие между ограничениями на массо-габаритные показатели и энергопотребление датчиков контроля состояния и между их техническими возможностями (чем больше датчиков, тем больше масса питающих и сигнальных проводов и потребляемая мощность от бортового генератора). Разрешением этого противоречия является применение принципиально нового подхода для организации питания датчиков и передачи информации на интегрированный пункт сбора информации датчиков. Для этого могут применяться в качестве источников питания элементы Зеебека, а для передачи информации на центральный пункт сбора – беспроводные системы связи.

Физической основой получения электрической мощности от элементов Зеебека является перепад температур между температурой внутри борта летательного аппарата и на его поверхности.

1 Термоэлектрические источники альтернативного электропитания

1.1 История открытия эффекта Зеебека

Днем рождения термоэлектричества можно считать 14 декабря 1820 г. В этот день на заседании Берлинской академии наук академик Томас Иоганн Зеебек впервые доложил о наблюдении им отклонения магнитной стрелки компаса вблизи замкнутой цепи из двух разнородных металлов, один спай которых нагревался (рисунок 1). Томас Зеебек называл этот эффект «термомагнетизмом». Позже, в 1822 г., в докладах Прусской академии наук был опубликован научный труд Томаса Зеебека «К вопросу о магнитной поляризации некоторых материалов и руд, возникающей в условиях разности температур».

Рисунок 1 – Иллюстрация к опыту, демонстрирующему эффект Зеебека

В своих опытах Томас Зеебек использовал контакт двух различных материалов (конструктивно выполненных в виде проволоки, пластин и/или стержней) из различных металлов, в частности из меди, висмута и сурьмы.

Суть явления, которое вошло впоследствии в физику под термином «эффект Зеебека» (рисунок 1), состояла в том, что при замыкании концов цепи, состоящей из двух разнородных металлических материалов, спаи которых (обозначенные на рисунке 1 m-p и n- o) находились при разных температурах, магнитная стрелка (а), помещенная вблизи такой цепи, поворачивалась так же, как и в присутствии магнитного материала. В результате Зеебек наблюдал возникновение магнитного поля, которое фиксировалось по отклонению магнитной стрелки. Угол и направление поворота магнитной стрелки зависели от значения разности температур на спаях цепи и сочетания материалов, из которых была составлена цепь.

Эффективность термоэлектрического преобразования теплового потока в электрическую энергию для наилучшего сочетания значений термоэлектродвижущей силы (термоЭДС) рядов пар материалов, составленных самим первооткрывателем этого эффекта Томасом Зеебеком, могла достичь 2–3%, что значительно превосходило КПД паровых машин того времени. Неизвестно, каким путем пошло бы развитие энергетики, будь больше внимания уделено термоэлектричеству в те годы.

Сегодня термоэлектричество наверстывает незаслуженное вековое забвение в энергетике. Это ускоренное движение началось совсем недавно - в 30‑е годы прошлого века благодаря работам А. Ф. Иоффе. Именно в эти годы была заложена основа развития современной термоэлектрической энергетики. Одним из первых выдающихся практических применений термоэлектрических полупроводниковых генераторов стал легендарный в тяжелые годы Великой Отечественной войны «Партизанский котелок» (ТГ-1, 1942 г.). Это устройство позволяло обеспечивать электрической энергией мощностью 2–4 Вт питание радиостанций партизанских отрядов и заменило труднодоступные и обладавшие в те времена малой емкостью гальванические батареи. Для получения электрической энергии было достаточно разности температур 250…300 °С над огнем костра при стабилизации температуры холодных спаев кипящей водой. Мировым термоэлектрическим сообществом общепризнан приоритет практического применения эффекта прямого преобразования тепловой энергии в электрическую за Советской Россией.

Для упрощения понимания используемых в последующих разделах обозначений и сокращений в таблице 1 приводится их единый перечень.

Таблица 1 – Список принятых обозначений и сокращений

Принятые обозначения

Расшифровка

Единица измерения

Коэффициент Зеебека (коэффициент термоЭДС)

Число пар термоэлектрических элементов в модуле

Высота термоэлектрического элемента

Сторона поперечного сечения элемента

T h

Температура горячего (hot) спая модуля

T с

Температура холодного (cold) спая модуля

Разность температур

R н

Электрическое сопротивление нагрузки

Q h

Энергия теплового потока, подаваемого на модуль (hot)

R h

Тепловое сопротивлеение между нагреваемой стороной ТГМ и источником теплоты с заданной температурой

Q c

Энергия теплового потока, отводимого с модуля (cold)

R c

Тепловое сопротивление между охлаждаемой стороной и окружающей средой

Напряжение на выходе модуля при Rн = R

Электрический ток через нагрузку при Rн = R

Электрическая мощность в нагрузке при Rн = R

Коэффициент полезного действия (эффективность) модуля

Отношение сопротивлений нагрузки и модуля

Внутреннее электрическое сопротивление модуля при рабочих температурах

R (22 °С)

Внутреннее электрическое сопротивление модуля в нормальных условиях

R t (22 °С)

Тепловое сопротивление модуля, измеренное при указанной температуре

Термоэлектрический генераторный модуль

Термоэлектрический генератор

Термоэлектрический элемент

1.2 Эффект Зеебека и его практическое применение

Как уже было отмечено, в основе термоэлектрической генерации лежит эффект Зеебека - термоэлектрический эффект, заключающийся в возникновении термоЭДС при нагреве контакта (спая) двух разнородных металлов или полупроводников (термопары). Напряжение термоЭДС E тэдс прямо пропорционально коэффициенту Зеебека α и разнице температур ΔT между горячей T h и холодной T c сторонами (спаями) термоэлектрического модуля (рисунок 2).

Рисунок 2 – Схематическое представление эффекта Зеебека на примере спая термоэлектрических элементов n- и p-типа

Представленная конструкция термопары состоит из разнородных полупроводниковых термоэлементов n- и p- типа, соединенных между собой на одной стороне, другие два свободных конца подключаются к нагрузке R н . Если температура места контакта отлична от температуры свободных концов, то по такой цепи пойдет ток, а на нагрузке будет выделяться полезная мощность. Величину термоЭДС можно определить по формуле:

Для увеличения получаемых электрической мощности и напряжения термопары соединяют последовательно, при этом они образуют термобатарею, или термоэлектрический модуль, графическое изображение которого представлено на рисунках 3 и 4.

Рисунок 3 – Чертеж термоэлектрического генераторного модуля

Рисунок 4 – Термоэлектрический генераторный модуль в разрезе

Конструктивное исполнение стандартного генераторного модуля мало чем отличается от холодильных термоэлектрических модулей. Между двух керамических пластин смонтированы электрически последовательно, а по тепловому потоку - параллельно термоэлектрические элементы n- и p- типа. Модуль имеет ширину А, длину В и высоту Н (рисунок 3). Как правило, модуль поставляется с напаянными проводами.

1.3 Обзор современных применений термоэлектрического преобразования

Развитие современной техники и технологий неразрывно связано с поиском новых источников энергии, в первую очередь - электрической. Основное требование - увеличить объем ее выработки, но в последнее время на передний план выходят дополнительные условия: энергия должна вырабатываться экологически чистым путем, должна быть возобновляемая и никак не связана с углеродом. Сегодня усилия многих ученых направлены на развитие «зеленой» энергетики, в которой особенно остро нуждаются Европа и США. Термоэлектрическая генерация является одним из перспективных, а в некоторых случаях единственно доступным способом прямого преобразования тепловой энергии в электрическую. В таком преобразовании отсутствует промежуточное звено, как, например, в работе тепловой или атомной электростанции, где тепловая энергия преобразуется в механическую, а затем механическая энергия преобразуется в электрическую.

За последние десятилетия в разных промышленно развитых странах были разработаны, испытаны и поставлены на серийное производство термоэлектрические генераторы (ТЭГ) мощностью от нескольких микроватт до десятков киловатт. Большинство ТЭГ предназначены для так называемой «малой энергетики». Они обладают такими уникальными качествами, как полная автономность, высокая надежность, простота эксплуатации, бесшумность и долговечность. ТЭГ используются для энергоснабжения объектов, удаленных от линий электропередачи, а также при целом ряде условий, где они являются единственно возможным источником электрической энергии.

Среди преимуществ, определяющих при выборе среди прочих приоритет термоэлектрического преобразования, во многих приложениях - это отсутствие движущихся частей и, как одно из следствий, отсутствие вибраций, а также необходимости применения жидкостей и/или газов под высоким давлением. (Преобразование происходит в самом термоэлектрическом веществе.) Работоспособность не зависит от пространственного положения и наличия гравитации.

ТЭГ можно применять при больших и малых перепадах температур. Последнее становится наиболее актуальным, если учесть, что до 90% сбрасываемой (отходящей) тепловой энергии выделяется на промышленных объектах и оборудовании при температуре поверхностей до 300 °С (рисунок 5).

Рисунок 5 – Распределение температур поверхностей промышленных агрегатов

Термоэлектрическое преобразование универсально, оно допускает использование практически любых источников теплового потока, в том числе при малых перепадах температур, при которых применение иных способов преобразования невозможно. Совсем недавно практическое применение получили устройства, утилизирующие энергию тепловых потоков при перепаде температур менее 10 К.

До настоящего времени существенным ограничением преимуществ термоэлектрического преобразования остается относительно низкий коэффициент эффективности преобразования теплового потока в электрическую энергию - от 3 до 8%. Однако в ситуации, когда для относительно небольших нагрузок невозможно или экономически нецелесообразно подвести обычные линии электропередачи, ТЭГ становится незаменимым. Сферы таких применений крайне разнообразны: от энергообеспечения космических аппаратов, находящихся на удаленных от Солнца орбитах, а также питания оборудования газои нефтепроводов, морских навигационных систем и до бытовых генераторных устройств, например, в составе дровяной топочноварочной печи, печи для сауны, камина и отопительного котла. Приведем еще несколько примеров практического применения ТЭГ:

а) использование отводимого от двигателей (автомобильных, корабельных и др.) тепла;

б) автономные источники питания электроэнергии для обеспечения работоспособности котельных, установок по переработке отходов и др.;

в) источники питания для катодной защиты нефте- и газопроводов;

г) преобразование тепла природных источников (например, геотермальных вод) в электрическую энергию;

д) обеспечение питанием различных устройств телеметрии и автоматики на объектах, удаленных от линий электропередачи;

е) измерение тепловых потоков (тепломеры);

ж) обеспечение автономным питанием маломощных электронных устройств (беспроводные датчики) за счет накапливаемой энергии (Energy Harvesting), собираемой при наличии минимальных перепадов температур (менее 10 °С);

и) получение электрической энергии на солнечных концентраторах за счет разности температур горячего и охлажденного теплоносителя в контуре.

1.4 Термоэлектрические генераторные сборки и устройства

Автономные источники электрической энергии на основе термоэлектрических генераторных модулей нашли широкое применение в различных областях деятельности человека. Мощность, вырабатываемая такими генераторами, составляет от единиц милливатт до единиц киловатт и определяется в конечном итоге экономической целесообразностью выбора этого способа преобразования энергии. Источником тепловой энергии может быть любая энергия, получаемая при сжигании природного газа, дров, угля, пеллет и др.

Термоэлектрическая генераторная сборка в минимальной (упрощенной) конфигурации состоит из металлической теплораспределительной пластины со стороны источника тепла, термоэлектрического генераторного модуля и охлаждающего радиатора, отводящего тепло, проходящее через модуль в окружающую среду и создающего необходимый для работы ТГМ перепад температур (рисунок 8). Вся конструкция скрепляется вместе тем или иным способом, чаще всего с помощью резьбовых соединений. В одну сборку могут быть установлены несколько модулей. Энергия от нескольких сборок может складываться при соответствующем подключении. Благодаря своей простоте конструкция обладает высокой надежностью и долговечностью (срок службы может превышать 10 лет при правильной эксплуатации).

В настоящее время наиболее широкое применение нашли два типа термоэлектрических генераторов: ТЭГ, работающий от природного газа и предназначенный для промышленного применения в газо- и нефтедобывающих отраслях, и ТЭГ, работающий от горения дров и иных широкодоступных видов топлива и предназначенный для решения задач обеспечения энергией садоводов, охотников, строителей и подразделений МЧС при отсутствии штатного электричества.

В ТЭГ для газо- и нефтедобывающей промышленности применяют тепло от сжигания природного газа для его преобразования в электрическую энергию. Такие промышленные генераторы предназначены для питания аппаратуры дистанционного телеуправления, телеметрии, автоматики и систем беспроводной передачи данных. В настоящее время линейка выпускаемых компанией «Криотерм» генераторов обеспечивает возможность получения электрической мощности от 6 до 80 Вт с одного генератора.

1.5 Термоэлектричество в быту

Идея использования термоэлектрической генерации электрической энергии интересует многих инженеров. Первым применением ТЭГ в быту можно по праву считать генератор, разработанный и освоенный в серийном производстве в конце 1940‑х годов. Он был предназначен для питания лампового приемника «Родина» (вырабатываемая мощность - порядка 2 Вт) и работал от тепла керосиновой лампы. Сейчас компания «Криотерм» выпускает в промышленных масштабах широкий спектр термоэлектрических генераторных модулей, позволяющих получать электрическую мощность, достаточную для питания маломощных нагрузок в течение протапливания печи, камина или даже мангала. В таблице 2 приведен ряд современных бытовых применений ТЭГ.

Таблица 2 – Применение термоэлектричества в быту

Бытовой прибор

Дополнительные возможности

Печи для отапливания помещения

Освещение помещения безопасным напряжением 12 В; зарядка аккумуляторов бытовых приборов; обеспечение ускоренной циркуляции воздуха за счет применения вентиляторов; питание ЖК-телевизора и другой радиоаппаратуры; зарядка аккумулятора для использования энергии после окончания протопки

Независимое питание вентиляторов для циркуляции горячего воздуха по дому; питание автономной подсветки

Печи для саун

Питание вентиляторов для циркуляции горячего воздуха; питание освещения и маломощных приборов безопасным напряжением 12 В; зарядка аккумулятора для питания устройств после протопки

Мангалы, жаровни, барбекю

Питание подсветки; питание системы регулирования температуры жарки; питание моторчика вращения шампура

Душевые кабины

Питание автономной подсветки; питание встроенного радиоприемника

Отопительные котлы

Питание циркуляционного насоса; питание маломощных бытовых устройств

Солнечные концентраторы тепловой энергии

Получение электрической энергии для питания систем телеметрии, автоматики, циркуляции теплоносителя и др.

Одним из наиболее ярких примеров применения термоэлектрических генераторов в бытовой технике являются нашедшие в настоящее время широкое распространение термоэлектрические генераторы ТЭГ В25-12 компании «Криотерм», вырабатывающие 25 Вт электрической мощности при обеспечении температуры на нагреваемой поверхности от 300 до 400 °C. Генератор надежен и неприхотлив в эксплуатации. Два генератора, установленные на небольшую отопительную дровяную печь, обеспечивают зарядку встроенного аккумулятора при совместной работе со встроенным контроллером заряда и выдают суммарно 50 Вт электрической энергии в период горения дров.

1.6 Измерение тепловых потоков (тепломеры)

Термоэлектрические модули широко используются в качестве измерителей плотности теплового потока, для измерения и контроля тепловых режимов двигателей, различных приборов и механизмов, для определения тепловых потерь, коэффициента теплопроводности, для получения информации о характере тепловыделений биологических объектов, для дозиметрии, контроля и автоматизации технологических процессов. Принцип действия термоэлектрического модуля в качестве тепломера основан на широко известном методе вспомогательной стенки: на пути регистрируемого теплового потока располагается «стенка» - образец с известным значением коэффициента теплопроводности. В термоэлектрическом модуле роль стенки исполняют ветви полупроводникового вещества. При этом уникальное преимущество термоэлектрического модуля заключается в том, что не требуется никаких дополнительных средств для измерения перепада температур: он определяется непосредственно по напряжению, генерируемому термоэлектрическим модулем. Режим работы ТЭМ в качестве тепломера - это частный случай режима генерации (при бесконечном сопротивлении нагрузки).

В 1820 появилось сообщение Г.Эрстеда о том, что магнитная стрелка отклоняется вблизи провода с электрическим током. В 1821 Т.Зеебек отметил, что стрелка отклоняется также, когда два стыка замкнутой электрической цепи, составленной из двух разных проводящих материалов, поддерживаются при разной температуре. Зеебек сначала полагал, что это чисто магнитный эффект. Но впоследствии стало ясно, что разность температур вызывает появление электрического тока в цепи (рис. 1). Важной характеристикой термоэлектрических свойств материалов, составляющих цепь, является напряжение на концах разомкнутой цепи (т.е. когда один из стыков электрически разъединен), так как в замкнутой цепи ток и напряжение зависят от удельного электросопротивления проводов. Это напряжение разомкнутой цепи V AB (T 1 , T 2), зависящее от температур T 1 и T 2 спаев (рис. 2), называется термоэлектрической электродвижущей силой (термо-ЭДС). Зеебек заложил основы для дальнейших работ в области термоэлектричества, измерив термо-ЭДС широкого круга твердых и жидких металлов, сплавов, минералов и даже ряда веществ, ныне называемых полупроводниками.

Электротермический эффект Пельтье.

В 1834 французский часовщик Ж.Пельтье заметил, что при прохождении тока через спай двух разных проводников температура спая изменяется. Как и Зеебек, Пельтье сначала не усмотрел в этом электротермического эффекта. Но в 1838 Э.Х.Ленц, член Петербургской академии наук, показал, что при достаточно большой силе тока каплю воды, нанесенную на спай, можно либо заморозить, либо довести до кипения, изменяя направление тока. При одном направлении тока спай нагревается, а при противоположном – охлаждается. В этом и состоит эффект Пельтье (рис. 3), обратный эффекту Зеебека.

Электротермический эффект Томсона.

В 1854 У.Томсон (Кельвин) обнаружил, что если металлический проводник нагревать в одной точке и одновременно пропускать по нему электрический ток, то на концах проводника, равноудаленных от точки нагрева (рис. 4), возникает разность температур. На том конце, где ток направлен к месту нагрева, температура понижается, а на другом конце, где ток направлен от точки нагрева, – повышается. Коэффициент Томсона – единственный термоэлектрический коэффициент, который может быть измерен на однородном проводнике. Позднее Томсон показал, что все три явления термоэлектричества связаны между собой уже упоминавшимися выше соотношениями Кельвина.

Термопара.

Если материалы цепи рис. 2 однородны, то термо-ЭДС зависит только от выбранных материалов и от температур спаев. Это экспериментально установленное положение, называемое законом Магнуса, лежит в основе применения т.н. термопары – устройства для измерения температуры, которое имеет важное практическое значение. Если термоэлектрические свойства данной пары проводников известны и один из спаев (скажем, с температурой T 1 на рис. 2) поддерживается при точно известной температуре (например, 0° C, точке замерзания воды), то термо-ЭДС пропорциональна температуре T 2 другого спая. Термопарами из платины и платино-родиевого сплава измеряют температуру от 0 до 1700° C, из меди и многокомпонентного сплава константана – от - 160 до +380° C, а из золота (с очень малыми добавками железа) и многокомпонентного хромеля – до значений, лишь на доли градуса превышающих абсолютный нуль (0 К, или - 273,16° C).

Термо-ЭДС металлической термопары при разности температур на ее концах, равной 100° C, – величина порядка 1 мВ. Чтобы повысить чувствительность измерительного преобразователя температуры, можно соединить несколько термопар последовательно (рис. 5). Получится термобатарея, в которой один конец всех термопар находится при температуре T 1 , а другой – при температуре T 2 . Термо-ЭДС батареи равна сумме термо-ЭДС отдельных термопар.

Поскольку термопары и их спаи могут быть выполнены небольшими и их удобно использовать в самых разных условиях, они нашли широкое применение в устройствах для измерения, регистрации и регулирования температуры.

Термоэлектрические свойства металлов.

Эффект Зеебека обычно легче других термоэлектрических эффектов поддается надежным измерениям. Поэтому его обычно и используют для измерения термоэлектрических коэффициентов неизвестных материалов. Поскольку термо-ЭДС определяется свойствами обеих ветвей термопары, одна ветвь должна быть из некоего «опорного» материала, для которого известна «удельная» термо-ЭДС (термо-ЭДС на один градус разности температур). Если одна ветвь термопары находится в сверхпроводящем состоянии, то ее удельная термо-ЭДС равна нулю и термо-ЭДС термопары определяется величиной удельной термо-ЭДС другой ветви. Таким образом, сверхпроводник – идеальный «опорный» материал для измерения удельной термо-ЭДС неизвестных материалов. До 1986 самая высокая температура, при которой металл можно было поддерживать в сверхпроводящем состоянии, составляла лишь 10 К (- 263° C). В настоящее время сверхпроводники можно использовать приблизительно до 100 К (- 173° C). При более высоких температурах приходится проводить измерения с несверхпроводящими опорными материалами. До комнатной и несколько более высоких температур опорным материалом обычно служит свинец, а при еще более высоких – золото и платина. См . также СВЕРХПРОВОДИМОСТЬ.

Эффект Зеебека в металлах имеет две составляющие – одна из них связана с диффузией электронов, а другая обусловлена их фононным увлечением. Диффузия электронов вызывается тем, что при нагревании металлического проводника с одного конца на этом конце оказывается много электронов с высокой кинетической энергией, а на другом – мало. Электроны с высокой энергией диффундируют в сторону холодного конца до тех пор, пока дальнейшей диффузии не воспрепятствует отталкивание со стороны избыточного отрицательного заряда накопившихся здесь электронов. Этим накоплением заряда и определяется компонента термо-ЭДС, связанная с диффузией электронов.

Компонента, связанная с фононным увлечением, возникает по той причине, что при нагревании одного конца проводника на этом конце повышается энергия тепловых колебаний атомов. Колебания распространяются в сторону более холодного конца, и в этом движении атомы, сталкиваясь с электронами, передают им часть своей повышенной энергии и увлекают их в направлении распространения фононов – колебаний кристаллической решетки. Соответствующим накоплением заряда определяется вторая компонента термо-ЭДС.

Оба процесса (диффузия электронов и их фононное увлечение) обычно приводят к накоплению электронов на холодном конце проводника. В этом случае удельная термо-ЭДС по определению считается отрицательной. Но в некоторых случаях из-за сложного распределения числа электронов с разной энергией в данном металле и из-за сложных закономерностей рассеяния электронов и колеблющихся атомов в столкновениях с другими электронами и атомами электроны накапливаются на нагреваемом конце, и удельная термо-ЭДС оказывается положительной. Наибольшие термо-ЭДС характерны для термопар, составленных из металлов с удельными термо-ЭДС противоположного знака. В этом случае электроны в обоих металлах движутся в одном и том же направлении.

Термоэлектрические свойства полупроводников.

В 1920–1930-х годах ученые обнаружили ряд материалов с низкой проводимостью, ныне называемых полупроводниками, удельные термо-ЭДС которых в тысячи раз больше, чем у металлов. Поэтому полупроводники в большей степени, чем металлы, подходят для изготовления термобатарей, от которых требуются большие термо-ЭДС либо интенсивное термоэлектрическое нагревание или охлаждение. Как и в случае металлов, термо-ЭДС полупроводников имеют две составляющие (связанные с диффузией электронов и с их фононным увлечением) и могут быть отрицательными или положительными. Наилучшие термобатареи получаются из полупроводников с термо-ЭДС противоположного знака.

Термоэлектрические приборы.

Если создать хороший тепловой контакт одной группы спаев термобатареи с каким-либо источником теплоты, например небольшим количеством радиоактивного вещества, то на выходе термобатареи будет вырабатываться напряжение. КПД преобразования тепловой энергии в электрическую в таких термоэлектрических генераторах достигает 16–17% (для паротурбинных электростанций тепловой КПД составляет 20–40%). Термоэлектрические генераторы находят применение в удаленных точках на Земле (например, в Арктике) и на межпланетных станциях, где от источника питания требуются большая долговечность, малые размеры, отсутствие движущихся механических деталей и пониженная чувствительность к условиям окружающей среды.

Можно также, присоединив к зажимам термобатареи источник тока, пропускать через ее термоэлементы ток. Одна группа спаев термобатареи будет нагреваться, а другая – охлаждаться. Таким образом, термобатарею можно использовать либо как термоэлектрический нагреватель (например, для бутылочек с детским питанием), либо как термоэлектрический холодильник. См. также ХОЛОДИЛЬНАЯ ТЕХНИКА.

Эффективность термоэлементов для термоэлектрических генераторов оценивается сравнительным показателем качества

Z = (S 2 s T)/k ,

где T – температура, S – удельная термо-ЭДС, k – удельная теплопроводность, а s – удельная электропроводность. Чем больше S , тем больше термо-ЭДС при данной разности температур. Чем больше s , тем больше может быть ток в цепи. Чем меньше k , тем легче поддерживать необходимую разность температур на спаях термобатареи.

Содержание:

В физике и электротехнике существует понятие термоэлектрического эффекта, известного также, как эффект Зеебека. Данное явление представляет собой образование электродвижущей силы внутри электропроводящей замкнутой цепи, состоящей из разнородных проводников. Они изготавливаются из термоэлектрических материалов и соединяются последовательно между собой. Основным условием возникновения эффекта является разница температур, образующихся на спаях. Существует процесс, обратный термоэлектрическому эффекту, называемый .

Термоэлектрические устройства и применение эффекта Зеебека

Термоэлектрическими материалами чаще всего являются сплавы, свойства которых похожи на полупроводниковые. К этой же категории можно отнести и некоторые химические соединения со специфическими параметрами, делающими их пригодными для использования в термоэлектрических устройствах.

Существуют три основных варианта применения эффекта Зеебека в различных конструкциях и устройствах:

  • Термоэлектрические генераторы.
  • Термоэлектрические холодильники.
  • Измерители температур в широком диапазоне: от абсолютного нуля до нескольких тысяч градусов по Кельвину.

Незначительная разница температур между спаями, как показали опыты, приводит к появлению термоэлектродвижущей силы, которая пропорциональна температурной разнице элементов, включенных в цепь. Однородные проводники, работающие , имеются в любой диаде. В свою очередь, в ней возникает термоэлектродвижущая сила, которая определяется свойствами проводников и разницей температур. При этом, распределение температуры между контактами не играет какой-либо решающей роли. Это и есть термоэлектрический эффект Зеебека.

Если цепь состоит всего лишь из двух разных проводников, то данная комбинация будет называться термопарой. Уровень термо-ЭДС в этом случае зависит от материалов проводников и разницы температур между контактами. В большинстве случаев термопара применяется для определения температурных значений. Измерения до 1400 градусов по Кельвину может производится измерителями, в состав которых входят неблагородные элементы. При температуре 1900 градусов и выше потребуются металлы платиновой группы. Для специальных измерителей очень высоких температур применяются особые жаростойкие сплавы.

Преобразование тепловой энергии в электрическую осуществляется с помощью термоэлектрических генераторов. Основной рабочий процесс этих устройств также связан с эффектом Зеебека. За счет этого может преобразовываться даже сбросовая тепловая энергия, выделяемая двигателями машин. Полученная таким путем электроэнергия используется по своему назначению для питания различных устройств.

Преимуществами таких генераторов является продолжительный срок эксплуатации и возможность их хранения в нерабочем состоянии без каких-либо ограничений. Они отличаются надежностью и устойчивым режимом работы, полностью устраняют риск коротких замыканий. Работа этих устройств абсолютно бесшумна, так как в их конструкции не содержатся подвижные элементы.

Широкого применения эти устройства не получили только по причине низкого коэффициента эффективности, составляющего 3-8%. Однако при отсутствии обычных ЛЭП и низкой предполагаемой нагрузке, использование таких генераторов будет вполне оправданным. В результате, эффект Зеебека применение нашел в области энергообеспечения космической техники, в преобразователях солнечной энергии, отопительных системах и многих других областях, где использование традиционных источников электроэнергии не представляется возможным.

Эффект Зеебека и Пельтье

Суть эффекта Зеебека заключается в образовании электродвижущей силы в электрическом контуре, в состав которого входят проводники А и В, контакты которых обладают разными температурами Т 1 и Т 2 . Данные свойства позволяют выполнять прямое преобразование тепловой энергии в электрическую.

В результате широкое применение в различных областях получил эффект Зеебека, формула которого определяет термо-ЭДС контура: где значения S A и S B являются абсолютными термоэлектродвижущими силами проводников А и В. Абсолютная термо-ЭДС относится к одной из характеристик проводника и представляет собой S=du/dT, где u является электродвижущей силой, возникающей в проводнике при наличии в нем разницы температур. Таким образом, теоретические основы эффекта Зеебека тесным образом связаны с температурными перепадами.

Элемент Пельтье является полной противоположностью устройствам, созданным на основе эффекта Зеебека. В данном случае, наоборот, под действием электрического тока образуется разница температур на рабочих площадках конструкции. Таким образом, с помощью электрического тока осуществляется перенос тепла с одной термопары на другую. При изменении направления тока нагреваемая сторона будет принимать противоположное состояние.

Данный эффект происходит в двух разнородных проводниках с одинаковой проводимостью. В каждом из них электроны обладают разным значением энергии и расположены они на очень близком расстоянии между собой. В результате произойдет перенос зарядов из одной среды в другую, и электроны с более высокой энергией на фоне низких уровней, отдадут излишки кристаллической решетке, вызывая нагрев. При недостатке энергии она, наоборот, передается от кристаллической решетки, приводя к охлаждению спая.

В случае неодинакового типа проводимости, полупроводников присутствующих в термопаре, эффект Пельтье будет выглядеть несколько иначе. При попадании в р-материал, электрон занимает место дырки на энергетическом уровне. В результате, у него теряется кинетическая энергия движения и наступает изменение состояния. Высвобожденная энергия способствует образованию свободных носителей с обеих сторон р-п-перехода, а оставшаяся часть уходит на кристаллическую решетку, которая и вызывает нагрев. Если в начальный момент значение энергии меньше, то спай начнет охлаждаться.