Методы анализа органических веществ элементарный функциональный структурный. Количественный анализ органических соединений. Определение молекулярной массы

Особенности анализа органических соединений:

  • - Реакции с органическими веществами протекают медленно с образованием промежуточных продуктов.
  • - Органические вещества термолабильны, при нагревании обугливаются.

В основе фармацевтического анализа органических лекарственных веществ лежат принципы функционального и элементного анализа.

Функциональный анализ - анализ по функциональным группам, т.е. атомам, группам атомов или реакционным центрам, которые определяют физические, химические или фармакологические свойства препаратов.

Элементный анализ используют для испытания подлинности органических лекарственных веществ, содержащих в молекуле атомы серы, азота, фосфора, галогенов, мышьяка, металлов. Атомы этих элементов находятся в элементоорганических лекарственных соединениях в неионизированном состоянии, необходимым условием испытания их подлинности является предварительная минерализация.

Это могут быть жидкие, твердые и газообразные вещества. Газообразные и жидкие соединения в основном обладают наркотическим действием. Эффект снижается от F - Cl - Br - I. Йодопроизводные в основном обладают антисептическим действием. Связь C-F; C-I; C-Br; C-Cl является ковалентной, поэтому для фармацевтического анализа ионные реакции используют после минерализации вещества.

Подлинность препаратов жидких галогенпроизводных углеводородов устанавливают по физическим константам (температура кипения, плотность, растворимость) и по наличию галогена. Наиболее объективным является способ установления подлинности по идентичности ИК-спектров препарата и стандартных образцов.

Для доказательства наличия галогенов в молекуле используют пробу Бейльштейна и различные методы минерализации.

Таблица 1. Свойства галогенсодержащих соединений

Хлорэтил Aethylii cloridum (МНН Ethylchloride)

Фторотан

  • 1,1,1-трифтор-2хлор-2-бромэтан
  • (МНН Halothane)

Бромкамфора

3-бром-1,7,7,триметилбицикло-гептанон-2

Жидкость прозрачная, бесцветная, легко летучая, со своеобразным запахом, трудно растворима в воде, со спиртом и эфиром смешивается в любых соотношениях.

Жидкость без цвета, прозрачная, тяжелая, летучая, с характерным запахом, мало растворима в воде, смешивается со спиртом, эфиром, хлороформом.

Белый кристаллический порошок или бесцветные кристаллы, запаха и вкуса, очень плохо растворим в воде, легко в спирте и хлороформе.

Bilignostum pro injectionibus

Билигност

Бис-(2,4,6-трийод-3-карбоксианилид) адипиновой кислоты

Бромизовал

2-бромизовалерианил-мочевина

Белый кристаллический порошок, слабо горького вкуса, практически не растворим в воде, спирте, хлороформе.

Белый кристаллический порошок или бесцветные кристаллы со слабым специфическим запахом, мало растворим в воде, растворим в спирте.

Проба Бейльштейна

Наличие галогена доказывается путем прокаливания вещества в твердом состоянии на медной проволоке. В присутствии галогенов, образуются галогениды меди, окрашивающие пламя в зеленый или сине-зеленый цвет.

Галогены в органической молекуле связаны ковалентной связью, степень прочности которой зависит от химического строения галогенпроизводного, поэтому для отщепления галогена перевода его в ионизированное состояние необходимы различные условия. Образовавшиеся галогенид-ионы обнаруживают обычными аналитическими реакциями.

Хлорэтил

· Метод минерализации - кипячение со спиртовым раствором щелочи (учитывая низкую температуру кипения, определение ведут с обратным холодильником).

CH 3 CH 2 Cl+KOH c KCl +C 2 H 5 OH

Образовавшийся хлорид-ион обнаруживают раствором серебра нитрата по образованию белого творожистого осадка.

Сl- + AgNO 3 > AgCl + NO 3 -

Фторотан

· Метод минерализации - сплавление с металлическим натрием

F 3 C-CHClBr + 5Na + 4H 2 O> 3NaF + NaCl + 2NaBr + 2CO 2

Образовавшиеся хлорид- и бромид -ионы обнаруживают раствором серебра нитрата по образованию белого творожистого и желтоватого осадков.

Фторид-ион доказывают реакциями:

  • - реакция с раствором ализаринового красного и раствором нитрата циркония, в присутствии F- красное окрашивание переходит в светло-желтое;
  • - взаимодействие с растворимыми солями кальция (выпадает белый осадок фторида кальция);
  • - реакция обесцвечивания роданида железа (красный).
  • · При добавлении к фторотану конц. H 2 SO 4 , препарат находится в нижнем слое.

Бромизовал

· Метод минерализации - кипячение со щелочью (щелочной гидролиз в водном растворе), появляется запах аммиака:


· Нагревание с конц. серной кислотой - запах изовалериановой кислоты


Бромкамфора

· Метод минерализации методом восстановительная минерализация (с металлическим цинком в щелочной среде)


Бромид-ион определяют реакцией с хлорамином Б.

Билигност

  • · Метод минерализации - нагревание с концентрированной серной кислотой: отмечается появление фиолетовых паров молекулярного йода.
  • · ИК-спектроскопия - 0,001% раствор препарата в 0,1 н растворе натрия гидроксида в области от 220 до 300 нм имеет максимум поглощения при л=236 нм.

Йодоформ

  • · Методы минерализации:
    • 1) пиролиз в сухой пробирке, выделяются фиолетовые пары йода
    • 4CHI 3 + 5O 2 > 6I 2 + 4CO 2 + 2H 2 O
    • 2) нагревание с конц. серной кислотой
    • 2CHI 3 + H 2 SO 4 > 3I 2 + 2CO 2 + 2H 2 O + SO 3

Доброкачественность (чистота галогенсодержащих углеводородов).

Проверку доброкачественности хлорэтила и фторотана проводят, устанавливая кислотность или щелочность, отсутствие или допустимое содержание стабилизаторов (тимола во фторотане - 0,01%), посторонних органических примесей, примесей свободного хлора (брома во фторотане), хлоридов, бромидов, нелетучего остатка.

  • 1) Хлорэтил: 1. Определяют t кипения и плотность,
  • 2. Недопустимую примесь спирта этилового (реакция образования йодоформа)
  • 2) Билигност: 1. Нагревание с кH 2 SO 4 и образование фиолетовых паров I 2
  • 2. ИК-спектроскопия
  • 3) Фторотан: 1. ИК-спектроскопия
  • 2. t кипения; плотность; показатель преломления
  • 3. не должно быть примесей Cl- и Br-

Количественное определение хлорэтила ГФ не предусматривает, но оно может быть выполнено методом аргентометрии или меркуриметрии.

Метод количественного определения - обратное аргентометрическое титрование по Фольгарду после минерализации (реакцию см. в определении подлинности).

1. Реакция перед титрованием:

фармацевтический лекарственный хлорэтил титрование

NaBr + AgNO 3 > AgBrv+ NaNO 3

2. Реакция титрования:

AgNO 3 + NH 4 SCN > AgSCN v + NH 4 NO 3

  • 3. В точке эквивалентности:
  • 3NH 4 SCN + Fe(NH 4)(SO 4) 2 >

Метод количественного определения - аргентометрическое титрование по Кольтгоффа после минерализации (реакции см. в определении подлинности).

  • 1. Реакция перед титрованием:
  • 3NH 4 SCN + Fe(NH 4)(SO 4) 2 > Fe (SCN) 3 + 2 (NH 4) 2 SO 4

точное количество буровато-красный

2. Реакция титрования:

NaBr + AgNO 3 > AgBrv+ NaNO 3

3. В точке эквивалентности:

AgNO 3 + NH 4 SCN > AgSCNv + NH 4 NO 3

обесцвечивание

Билигност

Метод количественного определения - косвенная йодометрия после окислительного расщепления билигноста до йодата при нагревании с раствором перманганата калия в кислой среде, избыток перманганата калия удаляют с помощью нитрата натрия, а для удаления избытка азотистой кислоты к смеси прибавляют раствор мочевины.

Титрант - 0,1 моль/л раствор натрия титсульфата, индикатор - крахмал, в точке эквивалентности наблюдают исчезновение синей окраски крахмала.

Схема реакции:

t; KMnO 4 +H 2 SO 4

RI 6 > 12 IO 3 -

Реакция выделения заместителя:

КIO 3 + 5KI + 3H 2 SO 4 >3I 2 + 3K 2 SO 4 + 3H 2 O

Реакция титрования:

I 2 +2Na 2 S 2 O 3 > 2NaI+Na 2 S 4 O 6

Йодоформ

Метод количественного определения - обратное аргентометрическое титрование по Фольгарду после минерализации.

Минерализация:

CHI 3 + 3AgNO 3 + H 2 O> 3AgI + 3HNO 3 + CO 2

Реакция титрования:

AgNO 3 + NH 4 SCN > AgSCN v + NH 4 NO 3

В точке эквивалентности:

3NH 4 SCN + Fe(NH 4)(SO 4) 2 > Fe (SCN) 3 v + 2 (NH 4) 2 SO 4

Хранение

Хлорэтил в ампулах в прохладном, защищенном от света месте, фторотан и билигност в склянках оранжевого стекла в сухом прохладном, защищенном от света месте. Бромкамфору хранят в склянках оранжевого стекла в сухом прохладном месте.

Хлорэтил используют для местной анестезии, фторотан для наркоза. Бромкамфору применяют в качестве седативного средства (иногда для остановки лактации). Бромизовал является снотворным средством, билигност применяют в качестве рентгеноконтрастного вещества в виде смеси солей в растворе.

Литература

  • 1. Государственная фармакопея СССР / Министерство здравоохранения СССР. - Х изд. - М.: Медицина, 1968. - С. 78, 134, 141, 143, 186, 373,537
  • 2. Государственная фармакопея СССР Вып. 1. Общие методы анализа. Лекарственное растительное сырье / Министерство здравоохранения СССР. - 11-е изд., доп. - М.: Медицина, 1989. - С. 165-180, 194-199
  • 3. Лекционный материал.
  • 4. Фармацевтическая химия. В 2 ч.: учебное пособие / В. Г. Беликов - 4-е изд., перераб. и доп. - М.: МЕДпресс-информ, 2007. - С. 178-179, 329-332
  • 5. Руководство к лабораторным занятиям по фармацевтической химии. Под редакцией А.П. Арзамасцева, стр.152-156.

Приложение 1

Фармакопейные статьи

Билигност

Бис-(2,4,6-трийод-З-карбоксианилид) адипиновой кислоты


C 20 H 14 I 6 N 2 O 6 M. в. 1139,8

Описание. Белый или почти белый мелкокристаллический порошок слабо горького вкуса.

Растворимость. Практически нерастворим в воде, 95% спирте, эфире и хлороформе, легко растворим в растворах едких щелочей и аммиака.

Подлинность. 0,001% раствор препарата в 0,1 н. растворе едкого натра в области от 220 до 300 нм имеет максимум поглощения при длине волны около 236 нм.

При нагревании 0,1 г препарата с 1 мл концентрированной серной кислоты выделяются фиолетовые пары йода.

Цветность раствора. 2 г препарата растворяют в 4 мл 1 н. раствора едкого натра, фильтруют и промывают фильтр водой до получения 10 мл фильтрата. Окраска полученного раствора не должна быть интенсивнее эталона № 4б или № 4в.

Проба с перекисью водорода. К 1 мл полученного раствора прибавляют 1 мл перекиси водорода; в течение 10--15 минут не должна появляться муть.

Соединения с открытой аминогруппой. 1 г препарата взбалтывают с 10 мл ледяной уксусной кислоты и фильтруют. К 5 мл прозрачного фильтрата прибавляют 3 капли 0,1 мол раствора нитрита натрия. Через 5 минут появившаяся окраска не должна быть интенсивнее эталона №2ж.

Кислотность. 0,2 г препарата встряхивают в течение 1 минуты с кипящей водой (4 раза по 2 мл) и фильтруют до получения прозрачного фильтрата. Объединенные фильтраты титрую! 0,05 н. раствором едкого натра (индикатор--фенолфталеин). На титрование должно расходоваться не более 0,1 мл 0,05 н. раствора едкого натра.

Хлориды. 2 г препарата взбалтывают с 20 мл воды и фильтруют до получения прозрачного фильтрата. 5 мл фильтрата, доведенные водой до 10 мл, должны выдерживать испытание на хлориды (не более 0,004% в препарате).

Фосфор. 1 г препарата помещают в тигель и озоляют до получения белого остатка. К остатку прибавляют 5 мл разведенной азотной кислоты и упаривают досуха, после чего остаток в тигле хорошо перемешивают с 2 мл горячей воды и фильтруют в пробирку через маленький фильтр. Тигель и фильтр промывают 1 мл горячей воды, собирая фильтрат в ту же пробирку, затем прибавляют 3 мл раствора молибдата аммония и оставляют на 15 минут в бане при температуре 38--40° Испытуемый раствор может иметь желтоватую окраску, но должен оставаться прозрачным (не более 0,0001% в препарате).

Иодмонохлорид. 0,2 г препарата взбалтывают с 20 мл воды и фильтруют до получения прозрачного фильтрата. К 10-мл фильтрата добавляют 0,5 г йодида калия, 2 мл соляной кислоты и 1 мл хлороформа. Хлороформный слой должен оставаться бесцветным.

Железо. 0,5 г препарата должны выдерживать испытание на железо (не более 0,02% в препарате). Сравнение проводят с эталоном, приготовленным из 3,5 мл эталонного раствора Б и 6,5 мл воды.

Сульфатная зола из 1 г препарата не должна превышать 0,1%.

Тяжелые металлы. Сульфатная зола из 0,5 г препарата должна выдерживать испытание на тяжелые металлы (не более 0,001% в препарате).

Мышьяк. 0,5 г препарата должны выдерживать испытание на мышьяк (не более 0,0001 % в препарате).

Количественное определение. Около 0,3 г препарата (точная навеска) помещают в мерную колбу емкостью 100 мл, растворяют в 5 мл раствора едкого натра, доливают водой до метки и перемешивают. 10 мл полученного раствора помещают в колбу емкостью 250 мл, прибавляют 5 мл 5% раствора перманганата калия и осторожно по стенкам колбы, при перемешивании, прибавляют 10 мл концентрированной серной кислоты по 0,5--1 мл и оставляют на 10 минут. Затем прибавляют медленно, по 1 капле через 2--3 секунды, при энергичном перемешивании. раствор нитрита натрия до обесцвечивания жидкости и растворения двуокиси марганца. После этого сразу прибавляют 10 мл 10% раствора мочевины и перемешивают до полного исчезновения пузырьков, смывая при этом со стенок колбы нитрит натрия. Затем к раствору прибавляют 100 мл воды, 10 мл свежеприготовленного раствора йодида калия и выделившийся йод титруют 0,1 н. раствором тиосульфата натрия (индикатор -- крахмал).

1 мл 0,1 н. раствора тиосульфата натрия соответствует 0,003166 г C 20 H 14 l 6 N 2 0 6 , которого в препарате должно быть не менее 99.0%.

Хранение. Список Б. В банках оранжевого стекла, в защищенном от света месте.

Рентгеноконтрастное средство.

Йодоформ

Трийодметан

СНI 3 М.в. 393,73

Описание. Мелкие пластинчатые блестящие кристаллы или мелкокристаллический порошок лимонно-желтого цвета, резкого характерного устойчивого запаха. Летуч уже при обыкновенной температуре, перегоняется с водяным паром. Растворы препарата быстро разлагаются от действия света и воздуха с выделением йода.

Растворимость. Практически нерастворим в воде, трудно растворим в спирте, растворим в эфире и хлороформе, мало растворим в глицерине. жирных и эфирных маслах.

Подлинность, 0,1 г препарата нагревают в пробирке на пламени горелки; выделяются фиолетовые пары йода.

Температура плавления 116--120° (с разложением).

Красящие вещества. 5 г препарата энергично взбалтывают в течение 1 минуты с 50 мл воды и фильтруют. Фильтрат должен быть бесцветным.

Кислотность или щелочность. К 10 мл фильтрата прибавляют 2 капли раствора бромтимолового синего. Появившееся желто-зеленое окрашивание должно перейти в синее от прибавления не более 0,1 мл 0,1 н. раствора едкого натра или в желтое от прибавления не более 0,05 мл 0,1 н. раствора соляной кислоты.

Галогены. 5 мл того же фильтрата, разведенные водой до 10 мл, должны выдерживать испытание на хлориды (не более 0,004% в препарате).

Сульфаты. 10 мл того же фильтрата должны выдерживать испытание на сульфаты (не более 0,01% в препарате).

Зола из 0,5 г препарата не должна превышать 0,1%.

Количественное определение. Около 0,2 г препарата (точная навеска) помещают в коническую колбу емкостью 250--300 мл, растворяют в 25 ли 95% спирта, прибавляют 25 мл 0,1 н. раствора нитрата серебра, 10 мл азотной кислоты и нагревают с обратным холодильником на водяной бане в течение 30 минут, защищая реакционную колбу от света. Холодильник промывают водой, в колбу прибавляют 100 мл воды и избыток нитрата серебра оттитровывают 0,1 н. раствором роданида аммония (индикатор -- железоаммониевые квасцы).

Параллельно проводят контрольный опыт.

1 мл 0,1 н. раствора нитрата серебра соответствует 0,01312 г СНI 3 , которого в препарате должно быть не менее 99,0%.

Хранение. В хорошо укупоренной таре, предохраняющей от действия света, в прохладном месте.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Федеральное государственное образовательное учреждение высшего профессионального образования «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» Сорокин В.И. ИДЕНТИФИКАЦИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ: ЭЛЕМЕНТНЫЙ И ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ, ИССЛЕДОВАНИЕ РАСТВОРИМОСТИ Методические указания к спецкурсу «Структурный анализ органических соединений» Ростов-на-Дону 2007 1 Методические указания разработаны кандидатом химических наук, старшим преподавателем кафедры органической химии В.И. Сорокиным. Компьютерный набор и верстка ст. препод. В.И. Сорокина Печатается в соответствии с решением кафедры органической химии химического факультета ЮФУ, протокол № 1-2007-2008 от 30.09.2007 г. 2 Содержание Введение..................................................................................................................................................4 1 Качественный элементный анализ.....................................................................................................5 1.1 Обнаружение углерода и водорода.............................................................................................5 1.2 Проба Лассеня...............................................................................................................................7 1.3 Обнаружение азота.......................................................................................................................8 1.4 Обнаружение серы........................................................................................................................9 1.5 Обнаружение галогенов (общие реакции)................................................................................10 1.6 Открытие фтора...........................................................................................................................12 1.7 Обнаружение йода......................................................................................................................12 1.8 Идентификация брома................................................................................................................14 1.9 Обнаружение хлора....................................................................................................................14 1.10 Идентификация кислорода.......................................................................................................15 1.11 Открытие фосфора....................................................................................................................15 2 Исследование растворимости...........................................................................................................16 3 Функциональный анализ...................................................................................................................20 3.1 Обнаружение гидроксильной группы.......................................................................................20 3.2 Обнаружение фенолов................................................................................................................22 3.3 Обнаружение карбонильной группы альдегидов и кетонов...................................................24 3.3.1 Общие реакции.....................................................................................................................24 3.3.2 Реакции альдегидов.............................................................................................................25 3.4 Карбоновые кислоты и их производные...................................................................................27 3.4.1 Обнаружение карбоновых кислот......................................................................................27 3.4.2 Ангидриды и хлорангидриды кислот.................................................................................27 3.4.3 Обнаружение сложных эфиров..........................................................................................28 3.4.4 Амиды кислот.......................................................................................................................29 3.4.5 Нитрилы................................................................................................................................29 3.5 Качественные реакции аминов..................................................................................................30 3.5.1 Общие реакции аминов.......................................................................................................30 3.5.2 Реакции, позволяющие различить первичные, вторичные и третичные амины...........31 3.5.3 Обнаружение первичных аминов.......................................................................................35 3.5.4 Обнаружение первичных ариламинов...............................................................................36 3.5.5 Определение вторичных аминов........................................................................................37 3.5.6 Определение третичных аминов........................................................................................37 3.6 Нитрозосоединения....................................................................................................................38 3.6.1 Определение С-нитрозосоединений..................................................................................38 3.6.2 Определение N-нитрозосоединений..................................................................................39 3.7 Нитросоединения........................................................................................................................40 3.7.1 Общие реакции.....................................................................................................................40 3.7.2 Определение алифатических С-нитросоединений...........................................................40 3.7.3 Ароматические С-нитросоединения..................................................................................41 3.8 Углеводороды..............................................................................................................................42 3.8.1 Алкены и алкины.................................................................................................................42 3.8.2 Ароматические углеводороды............................................................................................43 Литература.............................................................................................................................................45 3 Введение Методы идентификации органических соединений, основанные на качественных химических реакциях, использовались химиками еще задолго до внедрения современных спектральных методов, таких как ИК- и ЯМР-спектроскопия, масс- спектрометрия, рентгеновская дифракция. Поэтому качественный анализ – одна из наиболее детально проработанных ступеней систематической идентификации. За вековую историю отбора были отвергнуты реакции, дающие невнятный визуальный результат или низкую селективность к данному классу соединений. Именно поэтому большая часть описанных в данном пособии реакций заключаются лишь в сливании двух реагентов и наблюдением за визуальными изменениями, происходящими в течение нескольких минут. Конечно, прогресс физических методов анализа отодвинул на второй план качественные химические реакции, которые при всех своих достоинствах не могли дать такой подробной информации не только о наличии функциональных групп, но и о конформациях и других особенностях строения молекулы, но это не означает, что они тихо канули в историю. Даже при всей мощи ЯМР- спектроскопии и подобных методов начинающему исследователю на начальных этапах трудно ориентироваться в сигналах, характеристических полосах поглощения, специфической фрагментации и т.п. Именно в этот момент качественные химические реакции приходят на помощь, являясь отправной точкой для дальнейших размышлений. Не менее важен функциональный и элементный анализ при идентификации абсолютно неизвестного соединения, когда исследователь не имеет ни малейшего представления о строении соединения и нуждается в точке опоры, с которой можно начать движение. Задача данного методического пособия – познакомить с основами качественного элементного и функционального анализа, а также научить использовать сведения о растворимости в идентификации органических соединений. 4 1 Качественный элементный анализ Хотя очевидно, что органическое соединение содержит углерод и водород, полезно все же провести определение этих элементов с помощью качественных реакций. Особенно важными эти реакции могут оказаться при обнаружении примесей органических соединений в неорганических материалах. 1.1 Обнаружение углерода и водорода Обнаружение углерода озолением вещества с триоксидом молибдена. Все органические вещества являются восстановителями. Нагревание их при 500 °С со светло-желтым триоксидом молибдена приводит к образованию низших оксидов молибдена, окрашенных в синий цвет (молибденовая синь). Эту реакцию можно рассматривать как разновидность сожжения, в которой триоксид молибдена играет роль окислителя. Окисление органического соединения может быть представлено уравнением: R 8MoO3 + H C H 4Mo2O5 + CO2 + H2O R При проведении этой реакции надо быть уверенным, что вещество не загрязнено другими соединениями, способными окисляться оксидом молибдена. К таким соединениям, в частности, относятся сульфиты и арсениты щелочных металлов, аммониевые соли. Обнаружение углерода нагреванием с йодатом калия. Йодат калия не разлагается даже при нагревании до 500 °С в течении нескольких часов. Разложение начинается лишь при 560 °С: 2KIO 3 2KI + 6O 2 При нагревании смеси йодата калия с нелетучим органическим соединением йодид калия образуется уже при 300–400 °С, поскольку органические соединения 5 выступают в роли восстановителя. Реакционную смесь после охлаждения растворяют в воде и подкисляют: 5KI + KIO3 + 6HCl 3I2 + 3H2O + 3KCl Образовавшийся в этих условиях йодид калия реагирует с оставшимся йодатом, давая элементарный йод. Последний обнаруживают по посинению крахмала или экстракцией хлороформом (бензолом), который при этом окрашивается в красноватый (сиреневый) цвет. Как и в предыдущей реакции с оксидом молибдена, определение требует отсутствия в пробе неорганических восстановителей. Обнаружение углерода по пиролитическому образованию цианистого водорода. Разложение амида натрия наступает при нагревании до 200 °С. Если этот процесс вести в присутствии нелетучих органических соединений, образуется цианид натрия. Последний обнаруживают с помощью чувствительной реакции с бензидином и ацетатом меди. Реакция основана на том, что при окислении бензидина в уксуснокислом растворе образуется окрашенное соединение («бензидиновая синь»), представляющее собой комплекс с переносом заряда: H2 N NH2 H2 N NH2 + Cu2+ + Cu+ HN NH Сами катионы меди(II) не могут в заметной степени сместить вправо равновесие этой реакции. Образующиеся же при нагревании органического соединения с амидом натрия цианид-ионы необратимо связывают ионы одновалентной меди и тем самым смещают равновесие в сторону образования «бензидиновой сини». К достоинствам данной реакции можно отнести тот факт, что на ее протекание не оказывают влияния присутствие окислителей или восстановителей, однако реакции мешают неорганические соединения, содержащие углерод (карбонаты, цианиды и т.п.). 6 Обнаружение водорода пиролизом с серой. При пиролизе содержащих водород нелетучих органических соединений в присутствии расплавленной серы образуется сероводород. Реакция протекает быстро даже при 250 °С. Выделяющийся сероводород обнаруживают по почернению фильтровальной бумажки, смоченной ацетатом свинца. Однако надо иметь в виду, что вода, выделяющаяся при пиролизе кристаллогидратов, действует как перегретый пар и может также явиться причиной образования сероводорода. Обнаружение углерода и водорода окислением оксидом меди. При нагревании оксид меди(II) окисляет органические соединения до оксида углерода и воды. Углекислый газ обнаруживают с помощью раствора гидроксида бария, а воду по запотеванию холодных частей реакционного прибора. По этой причине, проба исследуемого вещества перед проведением анализа должна быть тщательно высушена. В состав многих органических веществ помимо углерода и водорода входят атомы и других элементов: азота, кислорода, серы, галогенов, фосфора и др. Такие элементы называются органогенами. Для их обнаружения необходимо провести предварительное разложение пробы, чтобы перевести ковалентно построенные органические соединения в ионно построенные соли металлов. Чаще всего это достигается путем сплавления вещества с металлическим натрием (проба Лассеня), реже с карбонатами щелочных металлов. 1.2 Проба Лассеня К небольшому количеству органического вещества в маленькой пробирке добавляют кусочек металлического натрия величиной с горошину. Пробирку нагревают вначале осторожно, как правило, при этом происходит бурная реакция, и содержимое пробирки обугливается, а затем до красного каления и прокаливают в течение некоторого времени (Осторожно, горло пробирки не должно быть направлено на людей!). Очень важно нагреть пробирку до красного каления, 7 иначе азот, содержащийся в пробе, может не перейти в цианид, что даст в дальнейшем неверное заключение о его отсутствии. Раскаленную пробирку опускают в стакан с водой, она растрескивается и образовавшиеся неорганические соли переходят в раствор, который и исследуют на наличие соответствующих элементов. 1.3 Обнаружение азота Обнаружение азота по образованию берлинской лазури. При сплавлении органических соединений с металлическим натрием содержащийся в них азот превращается в цианид натрия. Для его обнаружения хорошие результаты дает использование реакции образования берлинской лазури. К прозрачному фильтрату щелочного раствора, полученного при разложении пробы по Лассеню, прибавляют растворы солей железа(II) и (III), реакционную массу нагревают короткое время, не доводя до кипения. При этом протекают превращения: FeSO4 + 2NaOH Fe(OH)2 + Na2SO4 FeCl3 + 3NaOH Fe(OH)3 + 3NaCl Fe(OH)2 + 2NaCN Fe(CN)2 + 2NaOH Fe(CN)2 + 4NaCN Na4 в результате которых образуется желтая кровяная соль, которая, после подкисления раствора соляной кислотой, реагирует с хлоридом железа(III), давая берлинскую лазурь: Fe(OH)3 + 3HCl FeCl3 + 3H2O 3Na4 + 4FeCl3 Fe43 + 12NaCl Реакция очень чувствительна и, если в исследуемом веществе содержится мало азота, то о его наличии можно судить по образованию после подкисления зеленовато-синего окрашивания. 8 Обнаружение азота по реакции с полисульфидом аммония и хлоридом железа(III). К раствору, полученному после разложения вещества по Лассеню, прибавляют раствор полисульфида аммония и выпаривают досуха. После этого сухой остаток подкисляют соляной кислотой, нагревают и профильтровывают. К фильтрату прибавляют несколько капель раствора хлорида железа(III). Появление красного окрашивания является подтверждением наличия азота: NaCN + (NH4)2Sx NaSCN + (NH4)2Sx-1 6NaSCN + FeCl3 Na3Fe(SCN)6 + 3NaCl Если раствор после добавления хлорида железа приобретает синюю или сине- зеленую окраску, значит, при проведении пробы Лассеня остаток не был тщательно прокален, и азот не полностью перешел в цианид натрия. 1.4 Обнаружение серы При сплавлении органических серосодержащих соединений с металлическим натрием образуется сульфид натрия. Для обнаружения в полученном растворе серы его подкисляют уксусной кислотой, а затем добавляют ацетат свинца. Образование черного осадка сульфида свинца указывает на присутствие серы. Na2S + Pb(CH3COO)2 PbS + CH3COONa Проба с нитропруссидом натрия. К раствору, полученному после разложения по Лассеню, прибавляют несколько капель нитропруссида натрия. Появление сине- фиолетовой окраски указывает на наличие в исходном веществе серы. Na2S + Na2 Na4 + 2NaOH Обнаружение переводом в сероводород пиролитическим восстановлением. Для проведения данной пробы не требуется предварительное разложение вещества. При нагревании формиата натрия выше его температуры плавления (250 °С) он разлагается с выделением водорода: 2HCOONa H2 + Na2C2O4 Если эту реакцию проводить в присутствии нелетучих органических 9 серосодержащих соединений, то выделяется сероводород, который определяют по почернению фильтровальной бумаги, смоченной ацетатом свинца. 1.5 Обнаружение галогенов (общие реакции) Одна из наиболее трудных задач качественного элементного анализа, поскольку необходимо не только установить, содержатся ли в исходном веществе галогены, но и определить какие из них входят в состав молекулы. Проба Бельштейна. Очень простой и в то же время чувствительный способ обнаружения галогенов, не требующий предварительного сплавления с металлическим натрием. Тонкую медную проволоку с петлей или спиралью на конце тщательно прокаливают в верхнем бесцветном пламени горелки до прекращения окрашивания пламени в зеленый цвет. Дают проволоке остыть, после чего на ее конец наносят немного исследуемого вещества и снова помещают в нижнее пламя горелки. Появление зеленого окрашивания, обусловленного летучими галогенидами меди, является указанием на возможное содержание в веществе галогенов. Однако данная проба имеет ряд ограничений, во-первых, фториды меди нелетучи, поэтому обнаружить фтор, входящий в состав органического соединения, этим методом невозможно. Во-вторых, зеленое окрашивание пламени дают некоторые азотсодержащие соединения, например, хинолин, некоторые производные пиридина, мочевина и т.п., поэтому в случае положительной пробы наличие галогенов необходимо подтвердить с помощью других качественных реакций. Проба с тиокетоном Михлера. Позволяет обнаружить хлор, бром и йод. Нелетучее органическое соединение прокаливают в пробирке с карбонатом натрия, образовавшиеся при этом галогениды натрия окисляют хромовой смесью при нагревании. Выделяющиеся галогены обнаруживают по посинению фильтровальной бумажки, смоченной спиртовым раствором тиокетона Михлера: 10

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Особенности анализа органических соединений:

Реакции с органическими веществами протекают медленно с образованием промежуточных продуктов.

Органические вещества термолабильны, при нагревании обугливаются.

В основе фармацевтического анализа органических лекарственных веществ лежат принципы функционального и элементного анализа.

Функциональный анализ - анализ по функциональным группам, т.е. атомам, группам атомов или реакционным центрам, которые определяют физические, химические или фармакологические свойства препаратов.

Элементный анализ используют для испытания подлинности органических лекарственных веществ, содержащих в молекуле атомы серы, азота, фосфора, галогенов, мышьяка, металлов. Атомы этих элементов находятся в элементоорганических лекарственных соединениях в неионизированном состоянии, необходимым условием испытания их подлинности является предварительная минерализация.

Это могут быть жидкие, твердые и газообразные вещества. Газообразные и жидкие соединения в основном обладают наркотическим действием. Эффект снижается от F - Cl - Br - I. Йодопроизводные в основном обладают антисептическим действием. Связь C-F; C-I; C-Br; C-Cl является ковалентной, поэтому для фармацевтического анализа ионные реакции используют после минерализации вещества.

Подлинность препаратов жидких галогенпроизводных углеводородов устанавливают по физическим константам (температура кипения, плотность, растворимость) и по наличию галогена. Наиболее объективным является способ установления подлинности по идентичности ИК-спектров препарата и стандартных образцов.

Для доказательства наличия галогенов в молекуле используют пробу Бейльштейна и различные методы минерализации.

Таблица 1. Свойства галогенсодержащих соединений

Хлорэтил Aethylii cloridum (МНН Ethylchloride)

Фторотан

1,1,1-трифтор-2хлор-2-бромэтан

(МНН Halothane)

Бромкамфора

3-бром-1,7,7,триметилбицикло-гептанон-2

Жидкость прозрачная, бесцветная, легко летучая, со своеобразным запахом, трудно растворима в воде, со спиртом и эфиром смешивается в любых соотношениях.

Жидкость без цвета, прозрачная, тяжелая, летучая, с характерным запахом, мало растворима в воде, смешивается со спиртом, эфиром, хлороформом.

Белый кристаллический порошок или бесцветные кристаллы, запаха и вкуса, очень плохо растворим в воде, легко в спирте и хлороформе.

Bilignostum pro injectionibus

Билигност

Бис-(2,4,6-трийод-3-карбоксианилид) адипиновой кислоты

Бромизовал

2-бромизовалерианил-мочевина

Белый кристаллический порошок, слабо горького вкуса, практически не растворим в воде, спирте, хлороформе.

Белый кристаллический порошок или бесцветные кристаллы со слабым специфическим запахом, мало растворим в воде, растворим в спирте.

Проба Бейльштейна

Наличие галогена доказывается путем прокаливания вещества в твердом состоянии на медной проволоке. В присутствии галогенов, образуются галогениды меди, окрашивающие пламя в зеленый или сине-зеленый цвет.

Галогены в органической молекуле связаны ковалентной связью, степень прочности которой зависит от химического строения галогенпроизводного, поэтому для отщепления галогена перевода его в ионизированное состояние необходимы различные условия. Образовавшиеся галогенид-ионы обнаруживают обычными аналитическими реакциями.

Хлорэтил

· Метод минерализации - кипячение со спиртовым раствором щелочи (учитывая низкую температуру кипения, определение ведут с обратным холодильником).

CH 3 CH 2 Cl+KOH c KCl +C 2 H 5 OH

Образовавшийся хлорид-ион обнаруживают раствором серебра нитрата по образованию белого творожистого осадка.

Сl- + AgNO 3 > AgCl + NO 3 -

Фторотан

· Метод минерализации - сплавление с металлическим натрием

F 3 C-CHClBr + 5Na + 4H 2 O> 3NaF + NaCl + 2NaBr + 2CO 2

Образовавшиеся хлорид- и бромид -ионы обнаруживают раствором серебра нитрата по образованию белого творожистого и желтоватого осадков.

Фторид-ион доказывают реакциями:

Реакция с раствором ализаринового красного и раствором нитрата циркония, в присутствии F- красное окрашивание переходит в светло-желтое;

Взаимодействие с растворимыми солями кальция (выпадает белый осадок фторида кальция);

Реакция обесцвечивания роданида железа (красный).

· При добавлении к фторотану конц. H 2 SO 4 , препарат находится в нижнем слое.

Бромизовал

· Метод минерализации - кипячение со щелочью (щелочной гидролиз в водном растворе), появляется запах аммиака:

· Нагревание с конц. серной кислотой - запах изовалериановой кислоты

Бромкамфора

· Метод минерализации методом восстановительная минерализация (с металлическим цинком в щелочной среде)

Бромид-ион определяют реакцией с хлорамином Б.

Билигност

· Метод минерализации - нагревание с концентрированной серной кислотой: отмечается появление фиолетовых паров молекулярного йода.

· ИК-спектроскопия - 0,001% раствор препарата в 0,1 н растворе натрия гидроксида в области от 220 до 300 нм имеет максимум поглощения при л=236 нм.

Йодоформ

· Методы минерализации:

1) пиролиз в сухой пробирке, выделяются фиолетовые пары йода

4CHI 3 + 5O 2 > 6I 2 + 4CO 2 + 2H 2 O

2) нагревание с конц. серной кислотой

2CHI 3 + H 2 SO 4 > 3I 2 + 2CO 2 + 2H 2 O + SO 3

Доброкачественность (чистота галогенсодержащих углеводородов).

Проверку доброкачественности хлорэтила и фторотана проводят, устанавливая кислотность или щелочность, отсутствие или допустимое содержание стабилизаторов (тимола во фторотане - 0,01%), посторонних органических примесей, примесей свободного хлора (брома во фторотане), хлоридов, бромидов, нелетучего остатка.

1) Хлорэтил: 1. Определяют t кипения и плотность,

2. Недопустимую примесь спирта этилового (реакция образования йодоформа)

2) Билигност: 1. Нагревание с кH 2 SO 4 и образование фиолетовых паров I 2

2. ИК-спектроскопия

3) Фторотан: 1. ИК-спектроскопия

2. t кипения; плотность; показатель преломления

3. не должно быть примесей Cl- и Br-

Количественное определение хлорэтила ГФ не предусматривает, но оно может быть выполнено методом аргентометрии или меркуриметрии.

Метод количественного определения - обратное аргентометрическое титрование по Фольгарду после минерализации (реакцию см. в определении подлинности).

1. Реакция перед титрованием:

фармацевтический лекарственный хлорэтил титрование

NaBr + AgNO 3 > AgBrv+ NaNO 3

2. Реакция титрования:

AgNO 3 + NH 4 SCN > AgSCN v + NH 4 NO 3

3. В точке эквивалентности:

3NH 4 SCN + Fe(NH 4)(SO 4) 2 >

Метод количественного определения - аргентометрическое титрование по Кольтгоффа после минерализации (реакции см. в определении подлинности).

1. Реакция перед титрованием:

3NH 4 SCN + Fe(NH 4)(SO 4) 2 > Fe (SCN) 3 + 2 (NH 4) 2 SO 4

точное количество буровато-красный

2. Реакция титрования:

NaBr + AgNO 3 > AgBrv+ NaNO 3

3. В точке эквивалентности:

AgNO 3 + NH 4 SCN > AgSCNv + NH 4 NO 3

обесцвечивание

Билигност

Метод количественного определения - косвенная йодометрия после окислительного расщепления билигноста до йодата при нагревании с раствором перманганата калия в кислой среде, избыток перманганата калия удаляют с помощью нитрата натрия, а для удаления избытка азотистой кислоты к смеси прибавляют раствор мочевины.

Титрант - 0,1 моль/л раствор натрия титсульфата, индикатор - крахмал, в точке эквивалентности наблюдают исчезновение синей окраски крахмала.

Схема реакции:

t; KMnO 4 +H 2 SO 4

RI 6 > 12 IO 3 -

Реакция выделения заместителя:

КIO 3 + 5KI + 3H 2 SO 4 >3I 2 + 3K 2 SO 4 + 3H 2 O

Реакция титрования:

I 2 +2Na 2 S 2 O 3 > 2NaI+Na 2 S 4 O 6

Йодоформ

Метод количественного определения - обратное аргентометрическое титрование по Фольгарду после минерализации.

Минерализация:

CHI 3 + 3AgNO 3 + H 2 O> 3AgI + 3HNO 3 + CO 2

Реакция титрования:

AgNO 3 + NH 4 SCN > AgSCN v + NH 4 NO 3

В точке эквивалентности:

3NH 4 SCN + Fe(NH 4)(SO 4) 2 > Fe (SCN) 3 v + 2 (NH 4) 2 SO 4

Хранение

Хлорэтил в ампулах в прохладном, защищенном от света месте, фторотан и билигност в склянках оранжевого стекла в сухом прохладном, защищенном от света месте. Бромкамфору хранят в склянках оранжевого стекла в сухом прохладном месте.

Хлорэтил используют для местной анестезии, фторотан для наркоза. Бромкамфору применяют в качестве седативного средства (иногда для остановки лактации). Бромизовал является снотворным средством, билигност применяют в качестве рентгеноконтрастного вещества в виде смеси солей в растворе.

Литература

1. Государственная фармакопея СССР / Министерство здравоохранения СССР. - Х изд. - М.: Медицина, 1968. - С. 78, 134, 141, 143, 186, 373,537

2. Государственная фармакопея СССР Вып. 1. Общие методы анализа. Лекарственное растительное сырье / Министерство здравоохранения СССР. - 11-е изд., доп. - М.: Медицина, 1989. - С. 165-180, 194-199

3. Лекционный материал.

4. Фармацевтическая химия. В 2 ч.: учебное пособие / В. Г. Беликов - 4-е изд., перераб. и доп. - М.: МЕДпресс-информ, 2007. - С. 178-179, 329-332

5. Руководство к лабораторным занятиям по фармацевтической химии. Под редакцией А.П. Арзамасцева, стр.152-156.

Размещено на Allbest.ru

Приложение 1

Фармакопейные статьи

Билигност

Бис-(2,4,6-трийод-З-карбоксианилид) адипиновой кислоты

C 20 H 14 I 6 N 2 O 6 M. в. 1139,8

Описание. Белый или почти белый мелкокристаллический порошок слабо горького вкуса.

Растворимость. Практически нерастворим в воде, 95% спирте, эфире и хлороформе, легко растворим в растворах едких щелочей и аммиака.

Подлинность. 0,001% раствор препарата в 0,1 н. растворе едкого натра в области от 220 до 300 нм имеет максимум поглощения при длине волны около 236 нм.

При нагревании 0,1 г препарата с 1 мл концентрированной серной кислоты выделяются фиолетовые пары йода.

Цветность раствора. 2 г препарата растворяют в 4 мл 1 н. раствора едкого натра, фильтруют и промывают фильтр водой до получения 10 мл фильтрата. Окраска полученного раствора не должна быть интенсивнее эталона № 4б или № 4в.

Проба с перекисью водорода. К 1 мл полученного раствора прибавляют 1 мл перекиси водорода; в течение 10--15 минут не должна появляться муть.

Соединения с открытой аминогруппой. 1 г препарата взбалтывают с 10 мл ледяной уксусной кислоты и фильтруют. К 5 мл прозрачного фильтрата прибавляют 3 капли 0,1 мол раствора нитрита натрия. Через 5 минут появившаяся окраска не должна быть интенсивнее эталона №2ж.

Кислотность. 0,2 г препарата встряхивают в течение 1 минуты с кипящей водой (4 раза по 2 мл) и фильтруют до получения прозрачного фильтрата. Объединенные фильтраты титрую! 0,05 н. раствором едкого натра (индикатор--фенолфталеин). На титрование должно расходоваться не более 0,1 мл 0,05 н. раствора едкого натра.

Хлориды. 2 г препарата взбалтывают с 20 мл воды и фильтруют до получения прозрачного фильтрата. 5 мл фильтрата, доведенные водой до 10 мл, должны выдерживать испытание на хлориды (не более 0,004% в препарате).

Фосфор. 1 г препарата помещают в тигель и озоляют до получения белого остатка. К остатку прибавляют 5 мл разведенной азотной кислоты и упаривают досуха, после чего остаток в тигле хорошо перемешивают с 2 мл горячей воды и фильтруют в пробирку через маленький фильтр. Тигель и фильтр промывают 1 мл горячей воды, собирая фильтрат в ту же пробирку, затем прибавляют 3 мл раствора молибдата аммония и оставляют на 15 минут в бане при температуре 38--40° Испытуемый раствор может иметь желтоватую окраску, но должен оставаться прозрачным (не более 0,0001% в препарате).

Иодмонохлорид. 0,2 г препарата взбалтывают с 20 мл воды и фильтруют до получения прозрачного фильтрата. К 10-мл фильтрата добавляют 0,5 г йодида калия, 2 мл соляной кислоты и 1 мл хлороформа. Хлороформный слой должен оставаться бесцветным.

Железо. 0,5 г препарата должны выдерживать испытание на железо (не более 0,02% в препарате). Сравнение проводят с эталоном, приготовленным из 3,5 мл эталонного раствора Б и 6,5 мл воды.

Сульфатная зола из 1 г препарата не должна превышать 0,1%.

Тяжелые металлы. Сульфатная зола из 0,5 г препарата должна выдерживать испытание на тяжелые металлы (не более 0,001% в препарате).

Мышьяк. 0,5 г препарата должны выдерживать испытание на мышьяк (не более 0,0001 % в препарате).

Количественное определение. Около 0,3 г препарата (точная навеска) помещают в мерную колбу емкостью 100 мл, растворяют в 5 мл раствора едкого натра, доливают водой до метки и перемешивают. 10 мл полученного раствора помещают в колбу емкостью 250 мл, прибавляют 5 мл 5% раствора перманганата калия и осторожно по стенкам колбы, при перемешивании, прибавляют 10 мл концентрированной серной кислоты по 0,5--1 мл и оставляют на 10 минут. Затем прибавляют медленно, по 1 капле через 2--3 секунды, при энергичном перемешивании. раствор нитрита натрия до обесцвечивания жидкости и растворения двуокиси марганца. После этого сразу прибавляют 10 мл 10% раствора мочевины и перемешивают до полного исчезновения пузырьков, смывая при этом со стенок колбы нитрит натрия. Затем к раствору прибавляют 100 мл воды, 10 мл свежеприготовленного раствора йодида калия и выделившийся йод титруют 0,1 н. раствором тиосульфата натрия (индикатор -- крахмал).

1 мл 0,1 н. раствора тиосульфата натрия соответствует 0,003166 г C 20 H 14 l 6 N 2 0 6 , которого в препарате должно быть не менее 99.0%.

Хранение. Список Б. В банках оранжевого стекла, в защищенном от света месте.

Рентгеноконтрастное средство.

Йодоформ

Трийодметан

СНI 3 М.в. 393,73

Описание. Мелкие пластинчатые блестящие кристаллы или мелкокристаллический порошок лимонно-желтого цвета, резкого характерного устойчивого запаха. Летуч уже при обыкновенной температуре, перегоняется с водяным паром. Растворы препарата быстро разлагаются от действия света и воздуха с выделением йода.

Растворимость. Практически нерастворим в воде, трудно растворим в спирте, растворим в эфире и хлороформе, мало растворим в глицерине. жирных и эфирных маслах.

Подлинность, 0,1 г препарата нагревают в пробирке на пламени горелки; выделяются фиолетовые пары йода.

Температура плавления 116--120° (с разложением).

Красящие вещества. 5 г препарата энергично взбалтывают в течение 1 минуты с 50 мл воды и фильтруют. Фильтрат должен быть бесцветным.

Кислотность или щелочность. К 10 мл фильтрата прибавляют 2 капли раствора бромтимолового синего. Появившееся желто-зеленое окрашивание должно перейти в синее от прибавления не более 0,1 мл 0,1 н. раствора едкого натра или в желтое от прибавления не более 0,05 мл 0,1 н. раствора соляной кислоты.

Галогены. 5 мл того же фильтрата, разведенные водой до 10 мл, должны выдерживать испытание на хлориды (не более 0,004% в препарате).

Сульфаты. 10 мл того же фильтрата должны выдерживать испытание на сульфаты (не более 0,01% в препарате).

Зола из 0,5 г препарата не должна превышать 0,1%.

Количественное определение. Около 0,2 г препарата (точная навеска) помещают в коническую колбу емкостью 250--300 мл, растворяют в 25 ли 95% спирта, прибавляют 25 мл 0,1 н. раствора нитрата серебра, 10 мл азотной кислоты и нагревают с обратным холодильником на водяной бане в течение 30 минут, защищая реакционную колбу от света. Холодильник промывают водой, в колбу прибавляют 100 мл воды и избыток нитрата серебра оттитровывают 0,1 н. раствором роданида аммония (индикатор -- железоаммониевые квасцы).

Параллельно проводят контрольный опыт.

1 мл 0,1 н. раствора нитрата серебра соответствует 0,01312 г СНI 3 , которого в препарате должно быть не менее 99,0%.

Хранение. В хорошо укупоренной таре, предохраняющей от действия света, в прохладном месте.

Размещено на Allbest.ru

Подобные документы

    Понятие рефракции как меры электронной поляризуемости атомов, молекул, ионов. Оценка показателя преломления для идентификации органических соединений, минералов и лекарственных веществ, их химических параметров, количественного и структурного анализа.

    курсовая работа , добавлен 05.06.2011

    Основные операции при работе в лаборатории органической химии. Важнейшие физические константы. Методы установления строения органических соединений. Основы строения, свойства и идентификация органических соединений. Синтезы органических соединений.

    методичка , добавлен 24.06.2015

    Изучение теоретических основ методов осаждения органических и неорганических лекарственных веществ. Анализ особенностей взаимодействия лекарственных веществ с индикаторами в методах осаждения. Индикационные способы определения конечной точки титрования.

    курсовая работа , добавлен 30.01.2014

    Окислительная димеризация метана. Механизм каталитической активации метана. Получение органических соединений окислительным метилированием. Окислительные превращения органических соединений, содержащих метильную группу, в присутствии катализатора.

    диссертация , добавлен 11.10.2013

    Рассмотрение реакций, основанных на образовании комплексных соединений металлов и без их участия. Понятие о функционально-аналитической и аналитико-активной группах. Использование органических соединений как индикаторов титриметрических методов.

    курсовая работа , добавлен 01.04.2010

    Химическое строение - последовательность соединения атомов в молекуле, порядок их взаимосвязи и взаимного влияния. Связь атомов, входящих в состав органических соединений; зависимость свойств веществ от вида атомов, их количества и порядка чередования.

    презентация , добавлен 12.12.2010

    Изомерия как явление существования соединений, одинаковых по составу, но разных по строению и свойствам. Межклассовая изомерия, определяемая природой функциональной группы. Виды пространственной изомерии. Типы номенклатуры органических соединений.

    презентация , добавлен 12.03.2017

    Основные методы прогнозирования энтальпий образования органических соединений: методы молекулярной механики и аддитивные методы. Метод Бенсона и метод Татевского. Алкилбензолы и их функциональные производные: галогенбензолы, полифенилы, пиридины.

    курсовая работа , добавлен 17.01.2009

    Галогенирование ароматических соединений: механизм процесса. Расчет показателей при моно- и дихлорировании органических соединений. Расход реагента при максимальном выходе целевого продукта в сложных реакциях. Подбор подходящего механизма реакций.

    реферат , добавлен 15.02.2012

    Жизнь как непрерывный физико-химический процесс. Общая характеристика природных соединений. Классификация низкомолекулярных природных соединений. Основные критерии классификации органических соединений. Виды и свойства связей, взаимное влияние атомов.


Органических веществ анализ (устар.-орг. анализ), качеств. и количеств. определение состава орг. веществ и установление их строения.

При определении качеств. состава орг. веществ используют разнообразные методы, основанные на хим. реакциях, сопровождающихся образованием продуктов с характерными свойствами (цвет, запах, температура и др.), и на измерении физ. и физ.-хим. (хроматографич., спектральных и др.) характеристик идентифицируемых соединений.

При количеств, анализе орг. веществ устанавливают кол-во реагента, вступившего в реакцию с определяемыми орг. соед., или измеряют разл. физ. и физ.-хим. характеристики, связанные с кол-вом определяемого соединения.

органических веществ анализ включает элементный анализ, . структурно-групповой (включая функц. и стереоспецифич.), . и структурный анализ.

Исторически первыми были разработаны способы элементного анализа орг. веществ (А. Лавуазье, кон. 18 в.), основанные на их и гравиметрич., титриметрич. или газометрич. определении образовавшихся простых соед. отдельных элементов. Первые методы элементного (микроанализа) разработал Ф. Прегль в нач. 20 в. Со 2-й пол. 20 в. для элементного анализа веществ широко применяют автоматич. анализаторы, основанные на сожжении анализируемой пробы орг. вещества и газохромато-графич. разделении и определении продуктов сожжения. Анализатор снабжают компьютером и автоматич. системой ввода проб.

Изотопный анализ орг. веществ имеет целью определение в них содержания отдельных . а также определение соотношения одних и тех же орг. соед., содержащих разные изотопы или их сочетания. Для этого чаще всего применяют масс-спектрометрию или многократную газо-жидкостную (напр., при разделении обычных и дейтерир. форм или бензола). Наиб. эффективна хромато-масс-спектрометрия.

Большинство методов функционального анализа основано на взаимод. отдельных функц. групп орг. соед. с подходящими реагентами. Такие реакции бывают избирательными или ограниченно избирательными, т. е. характерны соотв. только для одной или неск. функц. групп.

Чаще всего используют реакции, связанные с образованием или исчезновением кислот, оснований, . . воды, . реже-осадков и окрашенных веществ. Образовавшиеся кислоты и основания определяют кислотно-основным титрованием в водной или неводной среде. В неводной среде возможно раздельное потенциометрич. титрование кислоты и основания разной силы при совместном присутствии.

В случае окислит.-восстановит. реакций, скорость которых невелика, обычно используют обратное титрование, т. е. оттитровывают избыток реагента. На образовании или поглощении в реакциях орг. соед. основано определение мн. функц. групп с помощью Фишера реактива (см. также Акваметрия).

Методы, основанные на реакциях, которые сопровождаются выделением или поглощением газа, используют редко, т. к. измерение объема или обычно требует громоздкой аппаратуры.

На образовании осадков основаны гравиметрич. методы определения небольшого числа функц. групп. Малорастворимые соед., используемые в этих случаях, представляют собой, как правило, металлич. карбоновых и сульфоно-вых кислот, орг. оснований, комплексные соед. (в т.ч. хелатные).

Образование окрашенных соед. часто достаточно специфично и позволяет избирательно определять функц. группы фотометрич. методами. Получили распространение (особенно в микроанализе) реакции, приводящие к образованию флуоресцирующих соед., т. к. чувствительность определения функц. группы в этом случае достаточно велика.

Особой разновидностью функцион. анализа считают методы, основанные на предварит. взаимодействии определяемого вещества с реагентами и определении образовавшегося продукта. Напр., ароматич. после можно определять полярографически, а реакция между аминогруппой и нафталинсульфохлоридом позволяет определять флуориметрически.

Ниже приведены примеры наиб. часто применяемых методов функцион. анализа.

Определение активного водорода в . аминах, амидах, карбоновых и сульфоновых кислотах, и суль-фонамидах основано на их взаимод. с реактивами Гриньяра (обычно с метилмагнийиодидом; см. Церевитинова метод )или с LiAlH 4 и измерении объема выделившегося или водорода соответственно. Активный водород в и его гомологах определяют по реакции с солями Ag(I), Hg(I) или Cu(I) с послед, титриметрич. определением выделившихся кислот.

Соединения с ненасыщ. углерод-углеродными связями чаще всего бромируют, иодируют или гидрируют. В первых двух случаях непрореагировавший Вг 2 или I 2 определяют иодометрически, а при измеряют объем поглощенного Н 2 . Число двойных связей можно установить по реакции присоединения солей с послед. титрованием выделившейся кислоты.

При определении гидроксильных групп чаще всего применяют с помощью уксусного, фталевого или пиромеллитового ангидрида, избыток которого оттитровывают. Можно использовать хлорангидриды кислот. Гидрокси-группы в обычно титруют растворами основании в неводной среде. Фенолы легко бромируются и сочетаются с . поэтому фенолы оттитровывают растворами Вг 2 или солей диазония либо приливают к исследуемому раствору бромид-броматную смесь, избыток которой устанавливают иодометрически (см. также Фалина реакция).

Определение эпоксигрупп основано на их реакции с с образованием хлоргидринов; по завершении реакции избыток НСl оттитровывают раствором щелочи.

Для определения карбонильных соед. (альдегидов и кето-нов) наиб. часто применяют оксимирование, т. е. их превращение в при взаимод. с гидрохлоридом гидроксил-амина; выделившийся в результате реакции НСl оттитровывают раствором (конечную точку титрования устанавливают с помощью или потенциометрически). Существует большое число модификаций этого метода. можно определять также по реакции с бисульфитом Na с послед. кислотно-основным титрованием. Реже используют окисление альдегидов Ag + , реакцию с и образование оснований Шиффа.

Широкое применение при определении аминов находит титрование растворами кислот (обычно НСlО 4) в неводной среде. Этот метод часто позволяет раздельно определять орг. и неорг. основания в смесях, а также орг. основания разной силы при совместном присутствии. Амины можно определять, как и гидроксипроизводные, по реакции их ацилирования. Для определения первичных ароматич. аминов часто используют титрование раствором в кислой среде, сопровождающееся образованием диазосоединения. Аналогичное титрование вторичных аминов приводит к их N-нитрозированию и также применяется в анализе. При микроанализе первичных ароматич. аминов образовавшиеся диазосоединения обычно подвергают сочетанию с соответствующими азосоставляющими и определяют образовавшийся краситель спектрофотометрически. В случае анализа смесей первичных, вторичных и третичных аминов чаще всего применяют титрование раствором НСlO 4 в неводной среде исходной смеси (титруются все амины), смеси после ацетилирования уксусным ангидридом (титруются только третичные амины) и смеси после обработки ацетилацетоном или салициловым альдегидом (титруется сумма вторичных и третичных аминов).

Для определения солей арилдиазония раствором анализируемого вещества титруют навески азосоставляющей (З-метил-1-фенил-5-пиразолона, м -фенилендиамина и др.) или прибавляют к анализируемому раствору раствор азосоставляющей, избыток которой оттитровывают раствором NaNO 2 в кислой среде. В случае анализа диазосоединений возможно также применение газометрич. анализа, основанного на разложении исследуемого соед. с выделением N 2 , объем которого измеряют. Иногда, как и в случае анализа аминов, диазосоединения определяют по реакции сочетания с послед. спектрофотометрич. определением образовавшегося красителя.

Гидразины и тиолы обычно оттитровывают иодометрически. В случае тиолов можно использовать также взаимод. их с солями серебра или кислотно-основное титрование. Орг. сульфиды окисляют бромид-броматной смесью, избыток которой определяют титриметрически.

Широкое распространение для качеств. и количеств. функцион. анализа получили также избирательные и достаточно чувствительные методы ИК спектроскопии и ЯМР.

Возникновение стереоспецифического анализа орг. веществ во 2-й пол. 20 в. связано с развитием хроматографич. методов. Для разделения энантиомеров чаще всего предварительно проводят реакцию между анализируемыми веществами и оптически активными реагентами с образованием диастереомеров, которые затем разделяют методами газо-жидкост-ной или высокоэффективной жидкостной хроматографии на колонках с оптически активными неподвижными фазами.

Молекулярный анализ орг. веществ основан главным образом на применении хроматографии и разл. спектральных методов, которые позволяют устанавливать строение орг. соединений.

Фазовый анализ, позволяющий качественно и количественно анализировать кристаллич. формы орг. соед., проводят с помощью рентгенографии и электронографии. Рентгеновский, позволяет устанавливать с высокой точностью структурную ф-лу орг. вещества, определить длины связей между атомами и углы между связями.

Перечисленные выше методы анализа основаны на прямом определении анализируемых веществ или полученных из них производных. В органических веществ анализе часто применяют также косвенные методы. Так, например, карбоновые кислоты можно выделить из анализируемой смеси в виде труднорастворимых серебряных или др. солей и затем методом атомно-абсорбц. спектроскопии или рентгено-флуоресцентного анализа определить кол-во соответствующего металла; по результатам такого анализа можно рассчитать содержание карбоновой кислоты. В жидкостной хроматографии эффективно использование косвенного детектирования разделяемых веществ, при котором к подвижной фазе прибавляют активный компонент, образующий с продуктами разделения или с хроматографируемыми веществами легко детектируемые соединения.

Приемы анализа и используемая аппаратура зависят от конкретной задачи О. в. а.: определение основного вещества смеси, орг. или неорг. примеси в орг. веществах, орг. примеси в неорг. веществе или анализ сложной многокомпонентной смеси веществ.

Методы О. в. а. широко используют при разработке технологии пром. произ-ва орг. продуктов и в процессе самого произ-ва для разработки методик анализа сырья, вспомогат. веществ, промежут. продуктов на разных стадиях произ-ва, для контроля производств. процесса, готовой продукции, сточных вод и .х выбросов, для примесей в промежуточных и конечных продуктах, а также для разработки аналит. методик, обеспечивающих проведение необходимых кинетич. исследований. Во всех случаях необходимо выбирать оптим. варианты методов анализа и их сочетания в соответствии с требованиями к экспрессности, воспроизводимости, точности и т.п.

Принадлежность органических веществ к определенным классам устанавливается функциональным анализом, их чистота – хроматографией, строение – всеми существующими физико-химическими методами исследования с учетом способа получения, а в случае необходимости и результатов встречного синтеза.

Качественный элементный анализ позволяет определить, из атомов каких элементов построены молекулы органического вещества; количественный элементный анализ устанавливает состав соединения и простейшую формулу.

При выполнении элементного анализа органические вещества «минерализуют», т.е. разлагают таким образом, чтобы углерод превратился в СО 2 , водород – в Н 2 О, азот – в N 2 , NH 3 или цианид - ионы CN - и т.п. Дальнейшее определение проводят обычными методами аналитической химии.

В функциональном анализе применяются химические, физические и физико-химические методы.

Для качественных проб на функциональные группы выбирают реакции, при которых происходит изменение окраски или разделение фаз (выпадение осадка, выделение газа). Реакций, характерных только для какой-нибудь одной функциональной группы, известно немного, и для того, чтобы установить, к какому классу соединений относится данное вещество, нужно проделать несколько качественных реакций.

Лабораторная работа № 3 «Качественный элементный анализ»

Практическая часть

Опыт №1 . Открытие углерода и водорода сожжением вещества с оксидом меди (П).

Реактивы : порошок оксида меди (П), сахароза, безводный медный купорос, известковая вода.

Оборудование : пробирки, пробка с газоотводной трубкой, вата, сухое горючее.

Дня проведения эксперимента в пробирку «а» (рис. 31) насыпают черного порошка оксида меди (П) на высоту около 10 мм. Добавляют одну лопаточку сахарозы, тщательно перемешивают, энергично встряхивают пробирку.

В верхнюю часть пробирки «а» вводят в виде пробки небольшой комочек ваты (рис. 3.23.). Насыпают на вату тонкий слой белого порошка - безводного медного купороса. Закрывают пробирку «а» пробкой с газоотводной трубкой. При этом конец трубки должен почти упираться в вату с CuSO 4 . Нижний конец трубки помещают в пробирку «б», предварительно наливают внее около 1-2 мл известковой воды. Конец газоотводной трубки должен быть погружен в известковую воду.

Рис.3.23. Открытие углерода и водорода

Нагревают пробирку «а» на пламени горелки. Если пробка плотно закрывает пробирку, то через несколько секундиз газоотводной трубки начнут выходить пузырьки газа. Как только известковая вода помутнеет, вследствие выделения белого осадка СаСОз, пробирку «б» убирают. Пробирку «а» продолжают нагревать по всей длине до ваты, пока пары воды не достигнут белого порошка -обезвоженного медного купороса, находящегося на ватном тампоне, и не вызовут посинения его вследствие образования кристаллогидрата CuSО 4 · 5Н 2 О. Если слишком большой кусок ваты, то она поглотит выделившиеся пары и посинения может не произойти.

Опыт №2. Открытие азота сплавлением вещества с металлическим натрием.

Реактивы : мочевина, металлический натрий, этиловый спирт, спиртовой раствор фенолфталеина, раствор железного купороса FeS0 4 , 2 н раствора НСl.

Оборудование : сухое горючее, пробирки.

Для открытия азота 5 - 10 мг испытуемого вещества, например, несколько кристаллов мочевины, помещают в сухую пробирку. Прибавляют к мочевине небольшой кусочек металлического натрия.

Нагревают осторожно смесь в пламени горелки, пробирку вносят и выносят из пламени, не нагревая ее постоянно! Когда мочевина расплавится, следят, чтобы она смешалась с натрием (для успеха опыта необходимо чтобы натрий плавился вместе с веществом, а не отдельно от него - не на стенке пробирки!). При этом иногда наблюдается небольшая вспышка. Нагревают, пока получится однородный сплав.

Когда пробирка остынет, добавляют в нее 5 капель этилового спирта для устранения остатков металлического натрия, который реагирует со спиртом не так бурно, как с водой. При этом происходит образование алкоголята натрия с выделением водорода:

2С 2 Н 5 ОН +2Na →2C 2 H 5 0Na + Н 2

Убедившись, что остаток натрия прореагировал со спиртом (прекращается шипение от выделения пузырьков газа), добавляют в пробирку 5 капель воды и нагревают ее на пламени горенки, чтобы все растворилось. При этом цианид натрия переходит в раствор, а алкоголят натрия с водой образует едкую щелочь:

C 2 H 5 ОNa + НОН → С 2 Н 5 ОН + NaОH

Добавляют в пробирку 1 каплю спиртового раствора фенолфталеина. Появление малиново-красного окрашивания показывает, что в растворе образовалась щелочь. После этого внести в пробирку 1 каплю раствора железного купороса FeS0 4 обычно содержащего примесь соли оксида железа (III) Fe 2 (S0 4) 3 . В присутствии щелочи немедленно образуется грязно - зеленый осадок гидроксида железа (II) в смеси с желтым осадком гидроксида железа (III).

При наличии в растворе избытка цианида натрия гидроксид железа (II) образует комплексную желтую кровавую соль:

Fe(OH) 2 + 2NaCN → Fe(CN) 2 + 2 NaOH

Fe(CN) 2 + 4NaCN → Na 4

Пипеткой наносят в центр фильтровальной бумажки каплю жидкости из пробирки. Как только капля впитается, на нее наносят 1 каплю 2 н раствора НСl. После подкисления грязно-зеленый или желтоватый осадок гидроксидов железа (II) и (Ш) растворяется и при наличии азота немедленно появляется синее пятно образовавшейся берлинской лазури:

Fe(OH) 3 + 3 НСl → FeСl 3 + 3 Н 2 О

3 Na 4 + 4FeСl 3 → Fe 4 3 + 12 NaСl

Опыт № 3 . Открытие серы сплавлением органического вещества с металлическим натрием.

Реактивы : тиомочевина или сульфаниловая кислота, металлический натрий, этиловый спирт, раствора ацетата свинца Рb(СН3СОО) 2 .

Оборудование : сухое горючее, пробирки.

Для открытия серы испытуемое вещество, например, тиомочевину или сульфаниловую кислоту, помещают в сухую пробирку. Достаточно взять всего несколько кристаллов вещества.(5 – 10мг).

Добавляют к веществу кусочек металлического натрия (столбик длиной около I мм). Пробирку нагревают, следя за тем, чтобы натрий плавился не отдельно, а вместе с веществом, иначе, опыт не удастся. Наблюдаемая небольшая вспышка натрия не опасна (см. предыдущий опыт). При этом органическое вещество (тиомочевина) переходит в неорганическое соединение - сульфид натрия.

Когда пробирка остынет, прибавляют в нее 5 капель этилового спирта для устранения остатков металлического натрия, который со спиртом образует, алкоголят натрия C 2 H 5 ОNa. После окончания реакции (прекращение выделения пузырьков газа - водорода) добавляют для растворения сплава 5 капель воды и кипятят, чтобы ускорить растворение. Сульфид натрия при этом перейдет в раствор вместе с гидроксидом натрия, который, однако, не мешает дальнейшей реакции.

Для открытия серы добавляют несколько капель раствора ацетата свинца Рb(СН3СОО) 2 . При этом выпадает темно-коричневый осадок сульфида свинца:

Рb(СН 3 СОО) 2 .+ Na 2 S → PbS ↓ + 2 CH 3 COONa

Это качественная реакция на ион двухвалентной серы S -2 .

Опыт № 4. Открытие хлора при действии водорода на органическое вещество.

Реактивы : хлороформ CHСl 3 , этиловый спирт, металлический натрий, концентрированная азотная кислота HNO 3 .

Оборудование : сухое горючее, пробирки.

Помещают в пробирку I каплю хлороформа CHСl 3 . Добавляют 5 капель этилового спирта и кусочек металлического натрия (столбик длиной 1 мм). При этом происходит следующая реакция:

С 2 Н 5 ОН + Na → C 2 H 5 ОNa + Н 2

Обращают внимание на выделяющийся водород. Его можно зажечь у отверстия пробирки, если предварительно закрыть это отверстие пальцем, чтобы, накопить водород, а потом поднести отверстие к пламени горелки. Водород в момент выделения отщепляет хлор от хлороформа и образует хлористый водород, реагирующий затем с образовавшимся алкоголятом натрия.

CHCl 3 + 3H 2 → CH 4 + 3HCl

C 2 H 5 ONa + HCl → C 2 H 5 OH + NaCl

После того, как прекращается выделение водорода, для растворения образующегося белого осадка, нерастворимого в этиловом спирте, добавляют 2-3 капли воды. При этом избыток алкоголята натрия реагирует с водой, образуя щелочь:

C 2 H 5 ОNa + НОН → С 2 Н 5 ОН + NaOH

В присутствии щелочи нельзя отрывать ион хлора, так как добавление раствора нитрата серебра немедленно дает коричневый осадок оксида серебра, маскирующего осадок хлорида серебра:

AgNO 3 + 2 NaOH → Ag 2 0 + H 2 0 + 2 NaN0 3

Поэтому добавляют к раствору сначала 2 - 3капли концентрированной азотной кислоты HNO 3 (в вытяжном шкафу) для нейтрализации щелочи, а затем уже 2 капли 0,1 н раствора AgN0 3 . При наличии хлора немедленно выпадает белый творожистый осадок хлорида серебра, нерастворимый в HNO 3:

NaCl + AgNO 3 → AgCl ↓+ NaNO 3

Ни в коем случае не следует брать для реакции больше 1 капли хлороформа, так как это только вредит чувствительности реакции. Остаток не вступившего в реакцию хлороформа еще до прибавления нитрата серебра дает с водой прочную эмульсию в виде беловатой мутной жидкости, которая будет маскировать появление белой мути от хлорида серебра.

Опыт № 5. Открытие хлора по зеленой окраске пламени (проба Бейльштейна).

Реактивы : хлороформ CHСl 3 .

Оборудование : сухое горючее, медная проволока.

Берут медную проволоку длиной около 10 см, загнутую на конце петлей и вставленную другим концом в небольшую корковую пробку. Держа за пробку, прокаливают петлю впламени горелки до исчезновения посторонней окраски пламени (признак загрязнения медной петли).

2Cu + O 2 → 2 CuO

Остывшую петлю, покрывшуюся черным налетом оксида меди (II), опускают в пробирку, на дно которой помещают испытуемое вещество, например хлороформ. Смоченную веществом петлю вновь вносят в пламя горелки. Немедленно появляется характерная ярко-зеленая окраска пламени вследствие образования летучего соединения меди с хлором. Подобную же окраску пламени дают, помимо хлористых и другие галогенсодержащие органические соединения.

2CHCl 3 + 5CuO → CuCl 2 +4 CuCl + 2CO 2 + H 2 O

Для очистки проволоку можно смочить соляной кислотой и прокалить.

В отчете пишут уравнения соответствующих реакций и делают вывод о наличии анализируемых элементов в веществах.

Вопросы коллоквиума:

1. В какие неорганические соединения переводят углерод-, водород-, азот-, серо- и хлорсодержащие органические соединения для качественного определения соответствующих элементов? Почему именно в эти неорганические соединения?

2. Для чего при открытии таких элементов, как азот, сера, хлор, добавляют этиловый спирт и воду?

3. В чем смысл пробы Бейльштейна?

Лабораторная работа № 4 «Функциональный анализ»

Для того чтобы отличить ароматические углеводороды от алифатических, можно использовать некоторые цветные реакции, например реакцию ароматических углеводородов с хлороформом в присутствии хлорида алюминия. Эта реакция сопровождается образованием окрашенных продуктов. Так, при взаимодействии бензола с хлороформом в присутствии AlCl 3 кроме основного продукта реакции – бесцветного трифенилметана, образуется также окрашенная соль трифенилкарбения:

Окрашено

Эту реакцию можно также использовать для обнаружения ароматических галогенпроизводных.

Опыт. К 1-2 мл хлороформа прибавляют 2-3 капли бензола, тщательно перемешивают и пробирку слегка наклоняют, чтобы смочить стенки. Добавляют 0,5-0,6 г безводного хлорида алюминия таким образом, чтобы часть порошка попала на стенки пробирки. Обращают внимание на окраску порошка на стенке и на цвет раствора. В реакции с бензолом возникает красно-оранжевая окраска, с дифенилом – пурпурная, с нафталином – синяя, с антраценом – зеленая.

Для того чтобы различить первичные, вторичные и третичные спирты, используется различная подвижность оксогруппы в реакции спиртов с раствором хлорида цинка в концентрированной соляной кислоте:

Третичные спирты взаимодействуют с этим реактивом с большей скоростью, давая нерастворимые галогеналкилы; первичные спирты реагируют только при продолжительном нагревании или стоянии, вторичные занимают промежуточное положение.

Опыт . В три пробирки наливают свежеприготовленный раствор хлорида цинка в соляной кислоте и охлаждают. В каждую пробирку добавляют по 3-4 капли соответственно первичного, вторичного или третичного спиртов, энергично встряхивают и оставляют в стакане с водой при 25-30 0 С. О начале реакции судят по помутнению раствора вследствие образования нерастворимого галогеналкила. Отмечают время помутнения раствора в каждой пробирке.

Качественные реакции карбонильных соединений многочисленны и разнообразны, что объясняется склонностью карбонильных соединений вступать в различные реакции замещения и присоединения.

Альдегиды жирного ряда восстанавливают двухвалентную медь в одновалентную. В качестве реактива, содержащего ионы Cu 2+ , применяется реактив Фелинга. Реактив Фелинга готовят перед употреблением, смешивая свежеприготовленный гидроксид меди (II), образующийся при взаимодействии гидроксида натрия с сульфатом меди(II), и раствор сегнетовой соли. При сливании растворов образуется гидроксид меди(II), который с сегнетовой солью дает комплексное соединение типа гликолята меди:

Ароматические альдегиды эту реакцию не дают.

Опыт . Приготавливают в пробирке реактив Фелинга, сливая по 1 мл исходных растворов, и прибавляют 2 мл карбонильного соединения. Верхнюю часть содержимого пробирки нагревают и наблюдают появление желтого или красного осадки оксида меди (I).

Практическая часть

Студентам выдается набор, состоящий из 6 бесцветных и прозрачных жидкостей, среди которых находятся по одному представителю алканов, ароматических углеводородов, спиртов (первичных, вторичных и третичных) и альдегидов. Названия представителей указываются преподавателем.

Задача студента, предварительно ознакомившись с основами функционального анализа, представленного во введении, составить план анализа, чтобы по его завершению можно было сделать вывод о нахождении того или иного соединения в пронумерованной пробирке.

В отчете пишут наблюдаемые явления, протекающие реакции и ход мышления. Делают вывод о принадлежности жидкостей к тому или иному классу и обосновывают его.

Лабораторная работа №5 «Тонкослойная хроматография»

Хроматография. Одним из наиболее простых и эффективных методов изучения состава смеси органических соединений, а также установление степени чистоты является тонкослойная хроматография (ТСХ). Наиболее широко применяется адсорбционный вариант ТСХ.

Процесс хроматографического разделения в этом варианте основан на различии в относительном сродстве компонентов анализируемой смеси к неподвижной фазе (сорбенту) и осуществляется в результате перемещения подвижной фазы (элюента) под действием капиллярных сил по слою сорбента, нанесенного на стеклянную или алюминиевую пластинку.

Хроматографирование проводится следующим образом. На пластинке отмечается стартовая и финишная линия (1-1,5 см от края пластинки). На стартовую линию в виде небольших пятен с помощью капилляра (не более 2-3 мм в диаметре) наносят раствор анализируемой смеси. Затем пластинку помещают в закрытую камеру с элюентом. Элюент представляет собой растворитель или смесь растворителей в различном соотношении. В качестве хроматографических камер используют как специальные камеры, так и различную химическую посуду: эксикаторы, стаканы, чашки Петри (рис.3.24.).

a) б)

Рис. 3.24. а) Эксикатор, оборудованный для тонкослойной хроматографии; б) использование стакана и чашки Петри для тонкослойной хроматографии.

При погружении нижней части пластинки в элюент линия старта должна находиться выше уровня растворителя. Поднимаясь по пластинке снизу вверх, растворитель разделяет нанесенные исследуемые вещества, перемещая их в слое сорбента с различной скоростью в зависимости от природы и свойств вещества. В результате компоненты смеси остаются на различном расстоянии от стартовой линии. Хроматографирование заканчивают, когда граница движущегося элюента достигнет линии финиша.

Затем пластинку достают из хроматографической камеры и высушивают на воздухе. Бесцветные соединения обнаруживают оптическим (ультрафиолет) или химическими методами. Последний метод заключается в обработке хроматограммы реагентами, которые взаимодействуют с анализируемыми веществами с образованием окрашенных пятен. Наиболее доступным и универсальным методом обнаружения является обработка парами иода. Для этого хроматограмму помещают на несколько минут в эксикатор, насыщенный парами иода.

После проявления пятен рассчитывают коэффициент подвижности R f , который представляет собой отношение расстояний от стартовой линии до центра пятна к расстоянию от стартовой до финишной линий (рис.3.25):

R f =L i /L

L i – расстояние от линии старта до центра пятна вещества i (см), L – расстояние от линии старта до лини финиша (см).

Рис.3.25. Хроматограмма, полученная при разделении смеси трех компонентов методом тонкослойной хроматографии.

Так же для идентификации веществ, входящие в состав анализируемой смеси, на стартовую линию дополнительно наносят растворы известных веществ – «свидетелей». После проявления пятен и вычисления R f сравнивают характеристики «свидетеля» и анализируемого вещества.

Практическая часть

Опыт №1. Обнаружение аскорбиновой кислоты (витамин С) во фруктовых соках.

Реактивы : сок апельсина (лимона, мандарина, рябины, граната и др.), элюент (этанол – гексан 3:1), 1%-ный раствор аскорбиновой кислоты.

Оборудование

На стартовую линию пластинки наносят пробы отфильтрованного сока апельсина (лимона, мандарина, рябины, граната и др.) и 1%-ного раствора аскорбиновой кислоты так, чтобы расстояние пятен от боковых краев и между собой было не менее 1 см. Когда пятна подсохнут, пластинку помещают в стакан, на дно которого наливают 2 мл элюента (этанол – гексан 3:1). Чтобы элюент не испарялся с поверхности пластинки, накрывают стакан чашкой Петри. После достижения элюента финишной линии, вынимают пластинку и высушивают ее на воздухе. Для обнаружения соединений помещают пластинку в эксикатор с парами иода. Отмечают проявившиеся пятна и определяют значение R f аскорбиновой кислоты.

Опыт №2. Обнаружение лимонной кислоты в лимоне.

Реактивы : сок лимона, раствор лимонной кислоты, элюент (этанол – гексан 3:1).

Оборудование : чашки Петри, стаканы, адсорбент Sorbfil, капилляры.

Аналогично предыдущему опыту на пластинку наносят пробы сока лимона и раствора лимонной кислоты («свидетель»). Выполняют хроматографирование и обнаружение аналогично опыту №1. Определяют значение R f лимонной кислоты.

Опыт №3. Обнаружение кофеина в чае и кофе.

Реактивы : растворы чая, кофе и кофеина, элюент этанол.

Оборудование : чашки Петри, стаканы, адсорбент Sorbfil, капилляры.

На линию старта пластинки наносят капли водного раствора чая, кофе и кофеина («свидетель»). Пластинку помещают в хроматографическую систему с этанолом в качестве элюента. Детектирование кофеина проводят парами иода. Определяют величину R f кофеина.

Опыт №4. Выделение кофеина и качественная реакция на него.

Реактивы : сухой чай, 30%-ный водный раствор пероксида водорода, концентрированный раствор аммиака, 10%-ный раствор соляной кислоты.

Оборудование : фарфоровая чашка, воронка, вата, асбестовая сетка, сухое горючее, предметное стекло.

Кофеин можно получить из листьев чая. Для этого в фарфоровую чашку насыпают около 0,5 – 1 г сухого чая, накрывают ее воронкой с заткнутым ватным тампоном отверстием и нагревают на асбестовой сетке около 10 мин. Сначала на внутренней части воронки конденсируются капельки воды, а затем начинает возгоняться кофеин, белые тонкие кристаллы которого осаждаются на холодных стенках воронки. Нагревание прекращают и после полного охлаждения фарфоровой чашки кристаллы кофеина счищают со стенок воронки и растворяют в 1 мл воды.

Для проверки наличия кофеина 1 каплю полученного раствора наносят на предметное стекло, добавляют 1 каплю 30%-ного водного раствора пероксида водорода и 1 каплю 10%-ной соляной кислоты. Смесь осторожно выпаривают досуха над пламенем сухого горючего. Стекло охлаждают и добавляют 1 каплю концентрированного раствора аммиака, а затем стекло вновь нагревают до полного испарения воды. Пурпурно красный цвет пятна указывает на наличие кофеина.

В отчете делают вывод об обнаружении заявленных компонентов в соках, фруктах и чае (кофе).

Вопросы коллоквиума:

1. На чем основан метод ТСХ?

2. Что такое коэффициент подвижности?

3. Что такое подвижная и неподвижная фаза?

4. Назовите методы проявления бесцветных пятен.

«Изучение состава органических соединений, их очистка и определение физических констант»

1. Иванов В.Г., Гева О.Н., Гаверова Ю.Г. Практикум по органической химии. - М.: Академия, 2000.

2. Артеменко А.И. Практикум по органической химии. - М.: Высшая школа, 2001.

3. Гинзбург О.Ф. Практикум по органической химии. Синтез и идентификация органических соединений. - М.: Высшая школа, 1989.


3.2. Ознакомительный (малый) практикум.

Лабораторная работа №6 «Алифатические углеводороды»

Углеводороды наиболее простые органические соединения, молекулы которых состоят только из атомов углерода и водорода. Углеводы, в молекулах которых углеродные атомы соединены друг с другом в открытые цепи (прямые или разветвленные), называют ациклическими (алифатическими) . От лат. Aliphatic – жирный. Первыми изученными соединениями этого класса были жиры.

Алициклические углеводороды – циклические соединения, молекулы которых построены из углеродных атомов, связанных между собой σ-связью. Основными представителями алициклических углеводородов являются циклоалканы (циклопарафины) и циклоалкены (циклоолефины) .

По характеру связи между углеродными атомами углеводороды могут быть предельными (насыщенными) и непредельными (ненасыщенными). К предельным углеводородам относятся алканы (парафины), к непредельным – алкены (олефины), алкадиены и алкины.

В алканах атомы углерода связаны между собой простой (одинарной) связью, в алкенах – двойной связью, алкинах – тройной связью. Алкадиены – это непредельные соединения, в молекулах которых имеются две двойные связи.

Предельные углеводороды при обычных условиях обладают большой химической инертностью. Это объясняется тем, что все σ-связи С-С и С-Н весьма прочны (энергии этих связей порядка 380 кДж/моль). К реакциям присоединения они вообще не способны вследствие ненасыщенности всех связей атомов углерода. С большинством химических реагентов алканы или вовсе не реагируют, или реагируют чрезвычайно медленно. Сильные окислители (например, перманганат калия) при комнатной температуре тоже не действуют на алканы.

При сравнительно невысоких температурах протекает лишь небольшое число реакций, при которых происходит замена атомов водорода на различные атомы или группы – реакции замещения.

Алкены и алкины являются более реакционно-способными из-за наличия двойной и тройной связи соответственно, которые можно считать функциональными группами. Естественно ожидать, что реакции алкенов и алкинов будут происходить по ненасыщенной связи – реакции присоединения.

Важными представителями алканов является метан СН 4 – главная часть природного (до 95-98%) и попутных газов. В значительных количествах он присутствует в газах переработки. Метан используют в основном в качестве дешевого топлива (в быту и промышленности). Он бесцветен и не имеет запаха. Для обнаружения его утечки в газопроводах добавляют небольшое количество сильно пахнущего вещества (одоранта).

Метан является ценным сырьем для химической промышленности. Из него получают ацетилен, галогенпроизводные, метанол, формальдегид и другие вещества. Метан служит для производства синтез - газа (водяного газа).

Изооктан (2,2,4-триметилпентан) С 8 Н 18 – главная составная часть высококачественного горючего (бензина) для карбюраторных двигателей внутреннего сгорания.

Средние члены гомологического ряда метана С 7 – С 17 используют как горючее для двигателей (бензин, керосин), а также в качестве растворителей. Высшие алканы С 18 – С 44 – сырье для производства моющих средств, смазочных масел, пластификаторов. К высшим алканам относится озокерит (горный воск), состоящий в основном из твердых алканов с разветвленной цепью углеродных атомов, число которых превышает 25-30.

Многие алкены широко используют в качестве мономеров (исходных продуктов) для получения высоко молекулярных соединений (полимеров).

Ацетилен используют для сварки и резки металлов, т.к. при горении в кислороде ацетилен создает высокотемпературное пламя (3150 0 С). Так же ацетилен – ценный продукт для химической промышленности. Из него получают синтетический каучук, уксусный альдегид и уксусную кислоту, этиловый спирт и многие другие вещества.

Практическая часть

Опыт №1 . Получение метана и его свойства.

Реактивы : ацетат натрия, натронная известь, бромная вода, раствор перманганата калия.

Оборудование : пробирка с газоотводной трубкой, штатив, лапка штатива, горелка.

В пробирку с газоотводной трубкой помещают смесь, состоящую из одной части обезвоженного тонкоизмельченного ацетата натрия и двух частей натронной извести (NaOH и CaO). Общий объем смеси 1-2 см (около 1/3 по высоте пробирки). Закрепляют пробирку в штативе в горизонтальном положении, нагревают ее в пламени горелки.

Поджигают метан у выхода газоотводной трубки через 2 минуты после выделения газа, т.е. после того, как улетучится гремучая смесь (смесь взрывоопасна!). Обращают внимание, что метан горит светящимся пламенем.

Выделяющийся метан пропускают через растворы бромной воды и KMnO 4 .

Изменяется ли окраска растворов? Почему?

Опыт №2 . Бромирование гексана.

Реактивы : гексан, бромная вода.

Оборудование : пробирка, стаканчик со льдом, горелка, пипетка.

А) Демонстрационный опыт . В две кюветы помещают 3 мл гексана и добавляют 4-5 капель раствора брома в четыреххлористом углероде и перемешивают. Одну кювету ставят под источник УФ-света, а другую накрывают бумагой и оставляют под тягой. Через 3-4 минуты сравнивают кюветы.

Б) В сухую пробирку помещают 1 мл гексана и несколько капель бромной воды. Содержимое пробирки перемешивают на холоде. . Нагревают содержимое пробирки на водяной бане до исчезновения окраски. Реакция сопровождается выделением HBr.

Как можно обнаружить выделение HBr?

Опыт №3 . Получение этилена и изучение его свойств.

Реактивы : этиловый спирт, серная кислота, песок, бромная вода, раствор перманганата калия.

Оборудование : коническая колба на 50 мл с газоотводной трубкой, пробирки, горелка.

В коническую колбу с газоотводной трубкой помещают 4-5 мл смеси этилового спирта и серной кислоты (1:5) и добавляют немного «кипелок» для равномерного кипения. Нагревают колбу со смесью в пламени горелки. Выделяющийся газ пропускают через раствор бромной воды, не прекращая нагревания. Отмечают, исчезает ли окраска брома .

После пропускания этилена через бромную воду и раствор перманганата калия этилен можно поджечь у конца газоотводной трубки. Он горит несветящимся пламенем.

Опыт №4 . Получение ацетилена и изучение его свойств.

Реактивы : карбид кальция, бромная вода, раствор перманганата калия.

Оборудование : пробирка с газоотводной трубкой, пробирки.

В сухую пробирку помещают кусочек карбида кальция и приливают воду, быстро закрывают пробирку пробкой с газоотводной трубкой и выделяющийся газ пропускают последовательно в пробирки с бромной водой, раствором KMnO 4 . Как изменяется окраска растворов?

Поджигают газ у конца отводной трубки. Ацетилен горит коптящим пламенем.

В отчете пишут наблюдения, уравнения всех проделанных реакций и называют полученные вещества. Делают вывод о сходстве и различии свойств алифатических углеводородов.

Вопросы коллоквиума:

1. Предложите радикальный цепной механизм бромирования гексана и ионный механизм бромирования этилена.

2. Напишите уравнения реакций получения ацетилена и уравнение реакции ацетилена с аммиачным раствором оксида серебра .

3. Приведите примеры углеводородов, содержащие первичный, вторичный и третичный атом углерода. Дайте им название.

4. Дайте определение изомерии. Изобразите возможные изомеры пентана и дайте им название.

5. Нахождение в природе важнейших углеводородов и их применение.

Лабораторная работа №7 «Галогеналканы»

Галогенпроизводными углеводородов называются органические соединения, образующиеся при замене атомов водорода в углеводородах на атомы галогенов. Соответственно галогеналканами называют производные алканов, в молекулах которых один или несколько атомов водорода замещены на атомы галогена.

В зависимости от числа атомов водорода, замещенных галогеном, различают моно-, ди-, тригалогенпроизводные и т.д.

Например: СН 3 Сl (хлорметан, метилхлорид), СН 2 Сl 2 (дихлорметан, метиленхлорид), CHCl 3 (трихлорметан, хлороформ), CCl 4 (тетрахлорметан, четыреххлористый углерод, тетрахлорид углерода).

В зависимости от типа атома углерода, связанного с галогеном, галогеналканы классифицируют как первичные, вторичные и третичные.

Также как и среди углеводородов, различают предельные, непредельные, циклические и ароматические галогенпроизводные углеводородов.

бромэтан 2-бромпропан 2-бром-2-метилпропан

(этилбромид) (изопропилбромид) (трет -бутилбромид)

первичный вторичный третичный

галогеналкан галогеналкан галогеналкан

хлорциклобутан бромциклогексан бромбензол

Низшие алкилгалогениды – газообразные вещества, средние – жидкости, высшие – твердые вещества. Галогеналкилы почти нерастворимы в воде. Низшие члены ряда обладают характерным запахом.

Химические свойства галогенпроизводных определяется главным образом атомом галогена, связанного с радикалом. Галогенпроизводные вступают в реакции замещения и отщепления. Наличие кратной связи приводит к увеличению реакционной способности.

Реакции с нуклеофилами – наиболее распространенные превращения галогеналканов.

Практическая часть

Опыт№1 . Получение 2-бромпропана (бромистого изопропила).

Реактивы : изопропиловый спирт, концентрированная серная кислота, бромид калия.

Оборудование : пробирки с газоотводной трубкой, лед, штативы, стаканчики, плитка.

В пробирку с газоотводной трубкой наливают 1,5-2 мл изопропилового спирта и 2 мл концентрированной серной кислоты. Смесь охлаждают и добавляют 1-2 мл воды. Продолжая охлаждение, всыпают в пробирку 1,5 г бромида калия. Присоединив газоотводную трубку, укрепляют пробирку наклонно в лапке штатива. Конец отводной трубки погружают в другую пробирку - приемник, содержащую 1 мл воды и помещают в стаканчик с водой и льдом. Реакционную смесь осторожно нагревают до кипения до тех пор, пока в приемник не перестанут поступать маслянистые капли, опускающиеся на дно. В случае сильного вспенивания реакционной массы нагревание на короткое время прерывают. По окончании реакции при помощи делительной воронки 2-бромпропан отделяют от воды, собирая его в сухую пробирку или плоскодонную колбу. Для осушения 2-бромпропана добавляют несколько кусочков хлорида кальция. Полученный продукт используют для следующего опыта.

Опыт№2 . Отщепление галогена от галогеналкилов при действии щелочей.

Реактивы : 2-бромпропан (опыт №1), раствор гидроксида натрия, азотная кислота, 1%-ный раствор нитрата серебра.

Оборудование : Делительная воронка, пробирки, лед.

Полученный в опыте №1, 2-бромпропан промывают в делительной воронке дистиллированной водой. Воду сливают, а 2-бромпропан переливают в пробирку, в которую затем добавляют 1-2 мл раствора гидроксида натрия. Смесь нагревают до начала кипения, охлаждают в ледяной бане. В этих условиях происходит щелочной гидролиз галогеналкилов с образованием галогенида натрия. Далее для обнаружения иона галогена небольшую часть смеси подкисляют азотной кислотой и добавляют несколько капель 1%-ного раствора нитрата серебра. Что происходит?

Опыт№3 . Свойства хлороформа (трихлорметана).

Реактивы : хлороформ, 10% раствор гидроксида натрия, раствор иода в иодиде калия, 1%-ный раствор нитрата серебра, 10% раствор аммиака, 20% раствор азотной кислоты;

Оборудование : пробирки, обратные холодильники, стаканы на 100 мл, лед.

3.1. В пробирку наливают 1 мл хлороформа и 1 мл воды. Закрывают пробирку пробкой и интенсивно встряхивают. Через некоторое время образуются два слоя, так как хлороформ практически нерастворим в воде. Пояснить где находится слой органического растворителя, а где вода и почему? А так же почему хлороформ не растворяется в воде?

3.2. В пробирку наливают 1 мл хлороформа и добавляют несколько капель раствора иода в иодиде калия. Смесь интенсивно встряхивают. Через некоторое время нижний слой приобретает розовую окраску. Хлороформ хорошо растворяет иод, при встряхивании иод переходит из водного слоя в хлороформ, окрашивая его в розовый цвет.

3.3. Щелочной гидролиз хлороформа . В пробирку наливают 1 мл хлороформа и 3 мл 10% раствора гидроксида натрия. Пробирку закрывают пробкой с обратным холодильником. Смесь осторожно нагревают до начала кипения, охлаждают в ледяной бане. В этих условиях происходит щелочной гидролиз хлороформа с образованием хлорида натрия и натриевой соли муравьиной кислоты: