Задания с графиками функций в огэ. Мастер - класс «Производная функции в заданиях ЕГЭ

Функция – это такая вещь, которая связывает две (или более) переменных между собой. Другими словами, функция помогает найти одну переменную, если мы знаем значение второй переменной. Например, если у нас в кармане есть 100 рублей, а шоколадка стоит 50 рублей, то мы можем купить 2 шоколадки. Если у нас в кармане есть 200 рублей, то мы можем купить 4 шоколадки. В этом случае первая переменная – это сумма, которая есть в кармане, а вторая переменная – количество шоколадок, которые мы можем купить. Стоимость шоколадки составляет 50 рублей, она не зависит от того сколько у нас денег, поэтому эта величина является постоянной.

Можно составить функцию для этого случая: у = 50 х , где у – деньги в кармане, х – количество шоколадок.

Естественно функции бывают более сложными. Но для решения заданий ОГЭ по математике достаточно знать как выглядят графики основных функций.

1. Функция вида y = kx + b (прямая линия)

В этой функции k и b это числа. Функция может быть записана в разном виде: y = x , y = 2x , y = 3x – 4, y = -9x +44, y = и т д. Главным признаком является присутствие икса (х ) в первой степени (то есть все случаи, когда мы не делим на х ).
Число k в этом случае отвечает за то, в какую сторону наклонена линия. Если k > 0 , то функция возрастает вправо. Если k < 0 , то функция возрастает влево.


Число b y . Если b >0 , то график пересекает ось y выше начала координат, если b < 0 – ниже.

2. Функция вида y = ax 2 + bx +c (парабола)

В этой функции a, b, c – числа. Функция может быть записана в разном виде: y = x 2, y = 3x 2 + 8, y = 2x 2 -4x + 10, y = -x 2 – 9x +1, y = – 7 и т. д. Главным признаком является наличие икса в квадрате (x 2).

Число а отвечает за то, в какую сторону (вверх или вниз) направлены ветви параболы (я еще называю веселый смайлик и грустный смайлик). Если a > 0 , то веселый смайлик, если a < 0 – грустный.

Число b отвечает за то в какую сторону (вправо или влево) смещена точка начала параболы (точка перегиба) относительно оси y . Если b > 0 , то график смещен влево, если b < 0 – вправо.

Число c – это точка пересечения графика с осью y . Если c >0 , то график пересекает ось y выше начала координат, если c < 0 – ниже.



3. Функция вида y = k/x + b (гипербола)

Эта функция по виду напоминает функцию прямой, за тем исключением, что х находится в знаменателе . Это как раз и является ее отличительной особенностью. Число k отвечает за расположение функции по четвертям, если k > 0 , то ветви гиперболы располагаются в первой и третьей четвертях, если k < 0 , то ветви располагаются во второй и четвертой четвертях.



Число а отвечает за сдвиг всей функции вниз (а < 0 ) или вверх (a > 0 ).


4. Функция вида y = a (прямая)

В этом случае функция выглядит как прямая, параллельная оси х . Например у = 2, это прямая линия, которая проходит параллельно оси х и пересекает ось у в точке 2.



5. Функция вида y = √x

Этот вид встречается в заданиях редко, однако лучше запомнить. Это практически парабола, но повернутая по часовой стрелке на 90 0 , а также в ней отсутствует ее нижняя половина. Если не понятно, то просто смотрите на рисунок:



Производной функции $y = f(x)$ в данной точке $х_0$ называют предел отношения приращения функции к соответствующему приращению его аргумента при условии, что последнее стремится к нулю:

$f"(x_0)={lim}↙{△x→0}{△f(x_0)}/{△x}$

Дифференцированием называют операцию нахождения производной.

Таблица производных некоторых элементарных функций

Функция Производная
$c$ $0$
$x$ $1$
$x^n$ $nx^{n-1}$
${1}/{x}$ $-{1}/{x^2}$
$√x$ ${1}/{2√x}$
$e^x$ $e^x$
$lnx$ ${1}/{x}$
$sinx$ $cosx$
$cosx$ $-sinx$
$tgx$ ${1}/{cos^2x}$
$ctgx$ $-{1}/{sin^2x}$

Основные правила дифференцирования

1. Производная суммы (разности) равна сумме (разности) производных

$(f(x) ± g(x))"= f"(x)±g"(x)$

Найти производную функции $f(x)=3x^5-cosx+{1}/{x}$

Производная суммы (разности) равна сумме (разности) производных.

$f"(x) = (3x^5)"-(cos x)" + ({1}/{x})" = 15x^4 + sinx - {1}/{x^2}$

2. Производная произведения

$(f(x) · g(x))"= f"(x) · g(x)+ f(x) · g(x)"$

Найти производную $f(x)=4x·cosx$

$f"(x)=(4x)"·cosx+4x·(cosx)"=4·cosx-4x·sinx$

3. Производная частного

$({f(x)}/{g(x)})"={f"(x)·g(x)-f(x)·g(x)"}/{g^2(x)}$

Найти производную $f(x)={5x^5}/{e^x}$

$f"(x)={(5x^5)"·e^x-5x^5·(e^x)"}/{(e^x)^2}={25x^4·e^x-5x^5·e^x}/{(e^x)^2}$

4. Производная сложной функции равна произведению производной внешней функции на производную внутренней функции

$f(g(x))"=f"(g(x))·g"(x)$

$f"(x)=cos"(5x)·(5x)"=-sin(5x)·5= -5sin(5x)$

Физический смысл производной

Если материальная точка движется прямолинейно и ее координата изменяется в зависимости от времени по закону $x(t)$, то мгновенная скорость данной точки равна производной функции.

Точка движется по координатной прямой согласно закону $x(t)= 1,5t^2-3t + 7$, где $x(t)$ - координата в момент времени $t$. В какой момент времени скорость точки будет равна $12$?

1. Скорость – это производная от $x(t)$, поэтому найдем производную заданной функции

$v(t) = x"(t) = 1,5·2t -3 = 3t -3$

2. Чтобы найти, в какой момент времени $t$ скорость была равна $12$, составим и решим уравнение:

Геометрический смысл производной

Напомним, что уравнение прямой, не параллельной осям координат, можно записать в виде $y = kx + b$, где $k$ – угловой коэффициент прямой. Коэффициент $k$ равен тангенсу угла наклона между прямой и положительным направлением оси $Ох$.

Производная функции $f(x)$ в точке $х_0$ равна угловому коэффициенту $k$ касательной к графику в данной точке:

Следовательно, можем составить общее равенство:

$f"(x_0) = k = tgα$

На рисунке касательная к функции $f(x)$ возрастает, следовательно, коэффициент $k > 0$. Так как $k > 0$, то $f"(x_0) = tgα > 0$. Угол $α$ между касательной и положительным направлением $Ох$ острый.

На рисунке касательная к функции $f(x)$ убывает, следовательно, коэффициент $k < 0$, следовательно, $f"(x_0) = tgα < 0$. Угол $α$ между касательной и положительным направлением оси $Ох$ тупой.

На рисунке касательная к функции $f(x)$ параллельна оси $Ох$, следовательно, коэффициент $k = 0$, следовательно, $f"(x_0) = tg α = 0$. Точка $x_0$, в которой $f "(x_0) = 0$, называется экстремумом .

На рисунке изображён график функции $y=f(x)$ и касательная к этому графику, проведённая в точке с абсциссой $x_0$. Найдите значение производной функции $f(x)$ в точке $x_0$.

Касательная к графику возрастает, следовательно, $f"(x_0) = tg α > 0$

Для того, чтобы найти $f"(x_0)$, найдем тангенс угла наклона между касательной и положительным направлением оси $Ох$. Для этого достроим касательную до треугольника $АВС$.

Найдем тангенс угла $ВАС$. (Тангенсом острого угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему катету.)

$tg BAC = {BC}/{AC} = {3}/{12}= {1}/{4}=0,25$

$f"(x_0) = tg ВАС = 0,25$

Ответ: $0,25$

Производная так же применяется для нахождения промежутков возрастания и убывания функции:

Если $f"(x) > 0$ на промежутке, то функция $f(x)$ возрастает на этом промежутке.

Если $f"(x) < 0$ на промежутке, то функция $f(x)$ убывает на этом промежутке.

На рисунке изображен график функции $y = f(x)$. Найдите среди точек $х_1,х_2,х_3…х_7$ те точки, в которых производная функции отрицательна.

В ответ запишите количество данных точек.




На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x 0. Найдите значение производной функции f(x) в точке x 0. K 0 K = -0,5 K = 0,5 0 K = -0,5 K = 0,5"> 0 K = -0,5 K = 0,5"> 0 K = -0,5 K = 0,5" title="На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x 0. Найдите значение производной функции f(x) в точке x 0. K 0 K = -0,5 K = 0,5"> title="На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x 0. Найдите значение производной функции f(x) в точке x 0. K 0 K = -0,5 K = 0,5">








На рисунке изображен график производной функции f(x), определенной на интервале (-1;17). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них. f (x)


0 на промежутке, то функция f(x)" title="На рисунке изображен график функции y = f(x). Найдите среди точек х 1, х 2, х 3, х 4, х 5, х 6 и х 7 те точки, в которых производная функции f(x) положительна. В ответ запишите количество найденных точек. Если f (x) > 0 на промежутке, то функция f(x)" class="link_thumb"> 8 На рисунке изображен график функции y = f(x). Найдите среди точек х 1, х 2, х 3, х 4, х 5, х 6 и х 7 те точки, в которых производная функции f(x) положительна. В ответ запишите количество найденных точек. Если f (x) > 0 на промежутке, то функция f(x) возрастает на этом промежутке Ответ: 2 0 на промежутке, то функция f(x)"> 0 на промежутке, то функция f(x) возрастает на этом промежутке Ответ: 2"> 0 на промежутке, то функция f(x)" title="На рисунке изображен график функции y = f(x). Найдите среди точек х 1, х 2, х 3, х 4, х 5, х 6 и х 7 те точки, в которых производная функции f(x) положительна. В ответ запишите количество найденных точек. Если f (x) > 0 на промежутке, то функция f(x)"> title="На рисунке изображен график функции y = f(x). Найдите среди точек х 1, х 2, х 3, х 4, х 5, х 6 и х 7 те точки, в которых производная функции f(x) положительна. В ответ запишите количество найденных точек. Если f (x) > 0 на промежутке, то функция f(x)">


На рисунке изображен график производной функции f(x), определенной на интервале (-9; 2). В какой точке отрезка -8; -4 функция f(x) принимает наибольшее значение? На отрезке -8; -4 f (x)






Функция y = f(x) определена на интервале (-5; 6). На рисунке изображен график функции y = f(x). Найдите среди точек х 1, х 2, …, х 7 те точки, в которых производная функции f(x) равна нулю. В ответ запишите количество найденных точек. Ответ: 3 Точки х 1, х 4, х 6 и х 7 – точки экстремума. В точке х 4 не существует f (x)









Литература 4 Алгебра и начала анализа класс. Учебник для общеобразовательных учреждений базовый уровень / Ш. А. Алимов и другие, - М.: Просвещение, Семенов А. Л. ЕГЭ: 3000 задач по математике. – М.: Издательство «Экзамен», Генденштейн Л. Э., Ершова А. П., Ершова А. С. Наглядный справочник по алгебре и началам анализа с примерами для 7-11 классов. – М.: Илекса, Электронный ресурс Открытый банк заданий ЕГЭ.